Course 18.06, Fall 2002: Quiz 3, Solutions

1 (a) One eigenvalue of $A=$ ones(5) is $\lambda_{1}=5$, corresponding to the eigenvector $\boldsymbol{x}_{1}=(1,1,1,1,1)$. Since the rank of A is 1 , all the other eigenvalues $\lambda_{2}, \ldots, \lambda_{5}$ are zero. Check: The trace of A is 5 .
(b) The initial condition $\boldsymbol{u}(0)$ can be written as a sum of the two eigenvectors $\boldsymbol{x}_{1}=(1,1,1,1,1)$ and $\boldsymbol{x}_{2}=(-1,0,0,0,1)$, corresponding to the eigenvalues $\lambda_{1}=5$ and $\lambda_{2}=0$:

$$
\boldsymbol{u}(0)=(0,1,1,1,2)=(1,1,1,1,1)+(-1,0,0,0,1)=\boldsymbol{x}_{1}+\boldsymbol{x}_{2} .
$$

The solution to $\frac{d \boldsymbol{u}}{d t}=A \boldsymbol{u}$ is then

$$
\boldsymbol{u}(t)=c_{1} e^{\lambda_{1} t} \boldsymbol{x}_{1}+c_{2} e^{\lambda_{2} t} \boldsymbol{x}_{2}=(1,1,1,1,1) e^{5 t}+(-1,0,0,0,1) .
$$

(c) The eigenvectors of $B=A-I$ are the same as for A, and the eigenvalues are smaller by 1 :

$$
B \boldsymbol{x}=(A-I) \boldsymbol{x}=A \boldsymbol{x}-\boldsymbol{x}=\lambda \boldsymbol{x}-\boldsymbol{x}=(\lambda-1) \boldsymbol{x},
$$

where \boldsymbol{x}, λ are an eigenvector and an eigenvalue of A. The eigenvalues of B are then $4,-1,-1,-1,-1$, the trace is $\sum_{i} \lambda_{i}=0$, and the determinant is $\prod_{i} \lambda_{i}=4$.
2 (a) B is similar to A when $B=M^{-1} A M$, with M invertible. The exponential of A is

$$
e^{A}=I+A+\frac{1}{2} A^{2}+\frac{1}{6} A^{3}+\cdots
$$

Every power B^{k} of B is similar to the same power A^{k} of A :

$$
B^{k}=M^{-1} A M M^{-1} A M \cdots M^{-1} A M=M^{-1} A^{k} M .
$$

Then

$$
e^{B}=I+B+\frac{1}{2} B^{2}+\cdots=M^{-1}\left(I+A+\frac{1}{2} A^{2}+\cdots\right) M=M^{-1} e^{A} M .
$$

It is also OK to show this using $e^{A}=S e^{\Lambda} S^{-1}$, although that assumes that the matrices are diagonalizable.
(b) The exponential of A is

$$
e^{A}=S e^{\Lambda} S^{-1}=S\left[\begin{array}{ccc}
e^{0} & 0 & 0 \\
0 & e^{2} & 0 \\
0 & 0 & e^{4}
\end{array}\right] S^{-1} .
$$

But this is an eigenvalue decomposition of e^{A}, so the eigenvalues are $1, e^{2}, e^{4}$.
More generally, the eigenvalues of e^{A} are the exponentials of the eigenvalues of A, and

$$
\operatorname{det}\left(e^{A}\right)=e^{\lambda_{1}} e^{\lambda_{2}} \cdots e^{\lambda_{n}}=e^{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}}=e^{\operatorname{tr}(A)}
$$

3 (a) For A to be symmetric, U has to be equal to V (notice V^{T} in the matrices):

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]=\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right] .
$$

Together with the restrictions on θ, α this requires that $\theta=\alpha . A$ is then a positive definite symmetric matrix, since it is similar to $\left[\begin{array}{ll}9 & 0 \\ 0 & 4\end{array}\right]$.
(b) The eigenvalues of $A^{T} A$ are the square of the singular values, that is, 81 and 16 . The eigenvectors of $A^{T} A$ are the columns of V, that is, $(\cos \alpha, \sin \alpha)$ and $(-\sin \alpha, \cos \alpha)$.
This can also be shown by multiplying $A^{T} A=V \Sigma^{2} V^{T}$ and identifying this as the eigenvalue decomposition of $A^{T} A$.

4 (a) A is singular, so one eigenvalue is 0 . It is also a Markov matrix, so another eigenvalue is 1 (Motivation: Each column of A sums to 1 , so each column of $A-I$ sums to 0 . $A-I$ then has an eigenvalue 0 , and A has an eigenvalue 1). The last eigenvalue is 0.5 since $\operatorname{trace}(A)=\sum_{i} \lambda_{i}=1.5$.
The eigenvectors are found by solving the following systems:

$$
\begin{array}{lc}
\lambda_{1}=1: & \left(A-\lambda_{1} I\right) x_{1}=\left[\begin{array}{ccc}
-.5 & .5 & .5 \\
.25 & -.5 & 0 \\
.25 & 0 & -.5
\end{array}\right] \boldsymbol{x}_{1}=0 \Longrightarrow \boldsymbol{x}_{1}=(2,1,1), \\
\lambda_{2}=0.5: \quad\left(A-\lambda_{2} I\right) \boldsymbol{x}_{2}=\left[\begin{array}{ccc}
0 & .5 & .5 \\
.25 & 0 & 0 \\
.25 & 0 & 0
\end{array}\right] \boldsymbol{x}_{2}=0 \Longrightarrow \boldsymbol{x}_{2}=(0,1,-1), \\
\lambda_{3}=0: \quad\left(A-\lambda_{3} I\right) \boldsymbol{x}_{3}=\left[\begin{array}{ccc}
.5 & .5 & .5 \\
.25 & .5 & 0 \\
.25 & 0 & .5
\end{array}\right] \boldsymbol{x}_{3}=0 \Longrightarrow \boldsymbol{x}_{3}=(2,-1,-1) .
\end{array}
$$

(b) Write the initial value as a linear combination of the eigenvectors:

$$
\boldsymbol{u}_{0}=(6,0,6)=3 \boldsymbol{x}_{1}-3 \boldsymbol{x}_{2} .
$$

The distribution after k steps is then

$$
\boldsymbol{u}_{k}=A^{k} \boldsymbol{u}_{0}=3 \lambda_{1}^{k} \boldsymbol{x}_{1}-3 \lambda_{2}^{k} \boldsymbol{x}_{2}=3 \boldsymbol{x}_{1}-3 \cdot 0.5^{k} \boldsymbol{x}_{2} \rightarrow 3 \boldsymbol{x}_{1}=(6,3,3) \text { as } k \rightarrow \infty .
$$

