Please circle your recitation:

1)	M2	$2-131$	P.-O. Persson	$2-088$	$2-1194$	persson
$2)$	M2	$2-132$	I. Pavlovsky	$2-487$	$3-4083$	igorvp
$3)$	M3	$2-131$	I. Pavlovsky	$2-487$	$3-4083$	igorvp
$4)$	T10	$2-132$	W. Luo	$2-492$	$3-4093$	luowei
5)	T10	$2-131$	C. Boulet	$2-333$	$3-7826$	cilanne
$6)$	T11	$2-131$	C. Boulet	$2-333$	$3-7826$	cilanne
$7)$	T11	$2-132$	X. Wang	$2-244$	$8-8164$	xwang
$8)$	T12	$2-132$	P. Clifford	$2-489$	$3-4086$	peter
$9)$	T1	$2-132$	X. Wang	$2-244$	$8-8164$	xwang
$10)$	T1	$2-131$	P. Clifford	$2-489$	$3-4086$	peter
$11)$	T2	$2-132$	X. Wang	$2-244$	$8-8164$	xwang

1 (36 pts.) (a) What are the eigenvalues of the 5 by 5 matrix $A=\boldsymbol{o n e s}(5)$ with all entries $a_{i j}=1$? Please look at A, not at $\operatorname{det}(A-\lambda I)$.
(b) Solve this differential equation to find $\boldsymbol{u}(t)$:

$$
\frac{d \boldsymbol{u}}{d t}=A \boldsymbol{u} \quad \text { starting from } \boldsymbol{u}(0)=(0,1,1,1,2)
$$

First split $\boldsymbol{u}(0)$ into two eigenvectors of A.
(c) Using part (a), what are the eigenvalues and trace and determinant of the matrix $B=$ same as A except zeros on the diagonal.

2 (20 pts.) (a) If A is similar to B show that e^{A} is similar to e^{B}. First define "similar" and $e^{A!!}$
(b) If A has 3 eigenvalues $\lambda=0,2,4$, find the eigenvalues of e^{A}. Using part (a) explain this connection with determinants:

$$
\text { determinant of } e^{A}=e^{\text {trace of } A}
$$

3 (22 pts.) Suppose the SVD $A=U \Sigma V^{\mathrm{T}}$ is

$$
A=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{ll}
9 & 0 \\
0 & 4
\end{array}\right]\left[\begin{array}{rr}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right]
$$

(a) For which angles θ and α (0 to $\frac{\pi}{2}$) is A a positive definite symmetric matrix? No computing needed.
(b) What are the eigenvalues and eigenvectors of $A^{\mathrm{T}} A$? No computing!

4 (22 pts.) Multinational companies in the US, Asia, and Europe have assets of $\$ 12$ trillion. At the start, $\$ 6$ trillion are in the US, $\$ 6$ trillion in Europe. Each year half the US money stays home, $\frac{1}{4}$ each goes to Asia and Europe. For Asia and Europe, half stays home and half is sent to the US.

$$
\left[\begin{array}{c}
\text { US } \\
\text { Asia } \\
\text { Europe }
\end{array}\right]_{\text {year } k+1}=\left[\begin{array}{ccc}
.5 & .5 & .5 \\
.25 & .5 & 0 \\
.25 & 0 & .5
\end{array}\right]\left[\begin{array}{c}
\text { US } \\
\text { Asia } \\
\text { Europe }
\end{array}\right]_{\text {year } k}
$$

(a) The eigenvalues and eigenvectors of this singular matrix A are
(b) The limiting distribution of the $\$ 12$ trillion as the world ends is

$$
\begin{array}{cc}
\text { US } & = \\
\text { Asia } & = \\
\text { Europe } & =
\end{array}
$$

