Course 18.06, Fall 2002: Quiz 1, Solutions

1 (a) For example

$$
\boldsymbol{w}=\left[\begin{array}{l}
4 \\
2 \\
4
\end{array}\right], \boldsymbol{z}=\left[\begin{array}{l}
2 \\
6 \\
0
\end{array}\right] \quad \text { or } \quad \boldsymbol{w}=\boldsymbol{u}+\boldsymbol{v}=\left[\begin{array}{l}
3 \\
4 \\
2
\end{array}\right], \boldsymbol{z}=3 \boldsymbol{u}-\boldsymbol{v}=\left[\begin{array}{l}
5 \\
0 \\
6
\end{array}\right]
$$

(b), (c) For example

$$
M=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 3 & 0 \\
2 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
2 & 1 & 0 \\
0 & \frac{5}{2} & 0 \\
0 & -1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & \frac{5}{2} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

x_{3} free variable. Let $x_{3}=1$ then $x_{1}=x_{2}=0$. Nullspace is all vectors

$$
\lambda\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

2 (a)

$$
A=\left[\begin{array}{llll}
1 & 3 & 2 & 1 \\
2 & 8 & 5 & 2 \\
1 & 5 & 3 & 1
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 3 & 2 & 1 \\
0 & 2 & 1 & 0 \\
0 & 2 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 3 & 2 & 1 \\
0 & 2 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=U
$$

Pivot columns 1 and 2, free columns 3 and 4 .
(b)

$$
N(A)=\text { linear combination of }\left[\begin{array}{c}
-\frac{1}{2} \\
-\frac{1}{2} \\
1 \\
0
\end{array}\right] \text { and }\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right]
$$

(c)

$$
\text { Particular } x_{p}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] \quad \text { Complete } x=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]+c\left[\begin{array}{c}
-\frac{1}{2} \\
-\frac{1}{2} \\
1 \\
0
\end{array}\right]+d\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right]
$$

3 (a)

$$
A=\left[\begin{array}{llll}
1 & & & \\
1 & 1 & & \\
1 & 2 & 1 & \\
1 & 3 & 3 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
& 1 & 2 & 3 \\
& & 1 & 3 \\
& & & 1
\end{array}\right]
$$

(b) U has 4 nonzero entries on the diagonal
$\Rightarrow A$ has 4 nonzero pivots
\Rightarrow Gauss-Jordan will work
$\Rightarrow A^{-1}$ exists
(c) If the last diagonal entry of U was zero $\Rightarrow A_{44}=1+9+9=19$.
(d)

$$
P=\left[\begin{array}{llll}
& & & 1 \\
& & 1 & \\
& 1 & & \\
1 & & &
\end{array}\right] \Rightarrow P A \text { has reversed rows \& } A P \text { has reversed columns. }
$$

