Your name is:

Please circle your recitation:

1)	M2	$2-131$	P.-O. Persson	$2-088$	$2-1194$	persson
2)	M2	$2-132$	I. Pavlovsky	$2-487$	$3-4083$	igorvp
$3)$	M3	$2-131$	I. Pavlovsky	$2-487$	$3-4083$	igorvp
$4)$	T10	$2-132$	W. Luo	$2-492$	$3-4093$	luowei
5)	T10	$2-131$	C. Boulet	$2-333$	$3-7826$	cilanne
$6)$	T11	$2-131$	C. Boulet	$2-333$	$3-7826$	cilanne
$7)$	T11	$2-132$	X. Wang	$2-244$	$8-8164$	xwang
$8)$	T12	$2-132$	P. Clifford	$2-489$	$3-4086$	peter
9)	T1	$2-132$	X. Wang	$2-244$	$8-8164$	xwang
$10)$	T1	$2-131$	P. Clifford	$2-489$	$3-4086$	peter
$11)$	T2	$2-132$	X. Wang	$2-244$	$8-8164$	xwang

1 (30 pts.) Start with the vectors

$$
\boldsymbol{u}=\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right] \text { and } \boldsymbol{v}=\left[\begin{array}{l}
1 \\
3 \\
0
\end{array}\right]
$$

(a) Find two other vectors \boldsymbol{w} and \boldsymbol{z} whose linear combinations fill the same plane P as the linear combinations of \boldsymbol{u} and \boldsymbol{v}.
(b) Find a 3 by 3 matrix M whose column space is that same plane P.
(c) Describe all vectors \boldsymbol{x} in the nullspace $(M \boldsymbol{x}=\mathbf{0})$ of your matrix M.

2 (30 pts.) (a) By elimination put A into its upper triangular form U. Which are the pivot columns and free columns?

$$
A=\left[\begin{array}{llll}
1 & 3 & 2 & 1 \\
2 & 8 & 5 & 2 \\
1 & 5 & 3 & 1
\end{array}\right]
$$

(b) Describe specifically the vectors in the nullspace of A. One way is to find the "special solutions" (how many??) to $A \boldsymbol{x}=\mathbf{0}$ by setting the free variables to 1 or 0 .
(c) Does $A \boldsymbol{x}=\boldsymbol{b}$ have a solution for the right side $\boldsymbol{b}=(3,8,5)$? If it does, find one particular solution and then the complete solution to this system $A \boldsymbol{x}=\boldsymbol{b}$.

3 (40 pts.) (a) Apply row elimination to A and find the pivots and the upper triangular U. Factor this "Pascal matrix" into L times U.

$$
A=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
1 & 3 & 6 & 10 \\
1 & 4 & 10 & 20
\end{array}\right]
$$

(b) How do L and U and the pivots confirm that A is invertible?
(c) If you change the entry " 20 " to what number (??) then A will become singular.
(d) What permutation matrix P will multiply A so that the rows of $P A$ are in reverse order (rows $1,2,3,4$ of A become rows $4,3,2,1$ of $P A$)? What matrix multiplication would put the columns in reverse order?

