Your name is:

Please circle your recitation:

1)	M2	2-131	PO. Persson	2-088	2-1194	persson
2)	M2	2-132	I. Pavlovsky	2-487	3-4083	igorvp
3)	M3	2-131	I. Pavlovsky	2-487	3-4083	igorvp
4)	T10	2-132	W. Luo	2-492	3-4093	luowei
5)	T10	2-131	C. Boulet	2-333	3-7826	cilanne
6)	T11	2-131	C. Boulet	2-333	3-7826	cilanne
7)	T11	2-132	X. Wang	2-244	8-8164	xwang
8)	T12	2-132	P. Clifford	2-489	3-4086	peter
9)	T1	2-132	X. Wang	2-244	8-8164	xwang
10)	T1	2-131	P. Clifford	2-489	3-4086	peter
11)	T2	2-132	X. Wang	2-244	8-8164	xwang

1 (30 pts.) Start with the vectors

$$\boldsymbol{u} = \begin{bmatrix} 2\\1\\2 \end{bmatrix} ext{ and } \boldsymbol{v} = \begin{bmatrix} 1\\3\\0 \end{bmatrix}$$

- (a) Find two other vectors \boldsymbol{w} and \boldsymbol{z} whose linear combinations fill the same plane P as the linear combinations of \boldsymbol{u} and \boldsymbol{v} .
- (b) Find a 3 by 3 matrix M whose *column space* is that same plane P.
- (c) Describe all vectors \boldsymbol{x} in the nullspace $(M\boldsymbol{x} = \boldsymbol{0})$ of your matrix M.

2 (30 pts.) (a) By elimination put A into its upper triangular form U. Which are the pivot columns and free columns?

$$A = \begin{bmatrix} 1 & 3 & 2 & 1 \\ 2 & 8 & 5 & 2 \\ 1 & 5 & 3 & 1 \end{bmatrix}$$

- (b) Describe specifically the vectors in the nullspace of A. One way is to find the "special solutions" (*how many*??) to $A\mathbf{x} = \mathbf{0}$ by setting the free variables to 1 or 0.
- (c) Does $A\boldsymbol{x} = \boldsymbol{b}$ have a solution for the right side $\boldsymbol{b} = (3, 8, 5)$? If it does, find one particular solution and then the complete solution to this system $A\boldsymbol{x} = \boldsymbol{b}$.

3 (40 pts.) (a) Apply row elimination to A and find the pivots and the upper triangular U. Factor this "Pascal matrix" into L times U.

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & 20 \end{bmatrix}$$

- (b) How do L and U and the pivots confirm that A is invertible?
- (c) If you change the entry "20" to what number (??) then A will become singular.
- (d) What permutation matrix P will multiply A so that the rows of PA are in reverse order (rows 1, 2, 3, 4 of A become rows 4, 3, 2, 1 of PA)? What matrix multiplication would put the *columns* in reverse order?