Course 18.06, Fall 2002: Final Exam, Solutions

1 (a)

$$
A=L U=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
2 & 0 & 1 & 0 \\
2 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & -1 & -1 & -1 & -1 & -1 \\
0 & 0 & -1 & -1 & -1 & -1 \\
0 & 0 & 0 & -1 & -1 & -1
\end{array}\right]
$$

(b) Four pivots \Rightarrow rank of $A=4$. The row reduced echolon form is

$$
R=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

The two special solutions $(0,0,0,-1,1,0),(0,0,0,-1,0,1)$ form a basis for the nullspace.
2 (a) The dimension of the nullspace is 1 , so the rank of A is $4-1=3$. The complete solution to $A \boldsymbol{x}=0$ is $\boldsymbol{x}=c \cdot(2,3,1,0)$ for any constant c.
(b) The row reduced echelon form has 3 pivots and the special solution $\boldsymbol{x}=(2,3,1,0)$:

$$
R=\left[\begin{array}{cccc}
1 & 0 & -2 & 0 \\
0 & 1 & -3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

3 (a) The projection matrix P projects onto the column space of P which is the line $c \cdot(1,2,-4)$.
(b) The vector from \boldsymbol{b} to the subspace is

$$
\boldsymbol{e}=\boldsymbol{b}-P \boldsymbol{b}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-\frac{1}{21}\left[\begin{array}{c}
-1 \\
-2 \\
4
\end{array}\right]=\frac{1}{21}\left[\begin{array}{l}
22 \\
23 \\
17
\end{array}\right]
$$

and the distance is

$$
\|e\|=\frac{1}{21} \sqrt{22^{2}+23^{2}+17^{2}}=\frac{\sqrt{1302}}{21}
$$

(c) Since P projects onto a line, its three eigenvalues are $0,0,1$. Since P is symmetric, it has a full set of (orthogonal) eigenvectors, and is then diagonalizable.

4 (a) When $A B=0$, every column of B is in the nullspace of A. So the null space of A contains the column space of B. Also the left null space of B contains the row space of A.
(b) The dimension of the nullspace of A is $n-r=7-r$. The dimension of the column space of B is s. Since the first contains the second, $7-r \geq s$, or $r+s \leq 7$.

5 (a) The least squares solution $\hat{\boldsymbol{x}}$ to $Q \boldsymbol{x}=\boldsymbol{b}$ is

$$
\hat{\boldsymbol{x}}=\left(Q^{\mathrm{T}} Q\right)^{-1} Q^{\mathrm{T}} \boldsymbol{b}=(I)^{-1} Q^{\mathrm{T}} \boldsymbol{b}=Q^{\mathrm{T}} \boldsymbol{b}
$$

(b) One approach: Q^{T} is 2 by 4 so there are free variables and many solutions to $Q^{\mathrm{T}} \boldsymbol{x}=0$. Then $Q Q^{\mathrm{T}} \boldsymbol{x}=0$ and $Q Q^{\mathrm{T}}$ is singular; not positive definite.
Second approach: The rank of Q is 2 , so the rank of $Q Q^{\mathrm{T}}$ must be ≤ 2. But $Q Q^{\mathrm{T}}$ is a 4 by 4 matrix, so the dimension of its nullspace is 2 . This means that it has 2 zero eigenvalues, and $Q Q^{\mathrm{T}}$ is not positive definite.
(c) The singular values of Q are the square roots of the eigenvalues of $Q^{\mathrm{T}} Q=I$, that is, all 1.

6 (a) Let $\boldsymbol{a}=(1,2,2)$ and $\boldsymbol{b}=(5,4,-2)$. The orthonormal vectors are

$$
\begin{aligned}
& \boldsymbol{q}_{1}=\frac{\boldsymbol{a}}{\|\boldsymbol{a}\|}=\frac{1}{3}\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right], \\
& \boldsymbol{q}_{2}=\frac{\boldsymbol{b}-\frac{\boldsymbol{q}_{1}^{\mathrm{T}} \boldsymbol{b}}{\boldsymbol{q}_{1}^{\mathrm{T}} \boldsymbol{\boldsymbol { q }}} \boldsymbol{q}_{1}}{\|\cdot\|}=\frac{1}{\sqrt{4^{2}+2^{2}+(-4)^{2}}}\left[\begin{array}{c}
4 \\
2 \\
-4
\end{array}\right]=\frac{1}{3}\left[\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right]
\end{aligned}
$$

where $\|\cdot\|$ means the norm of the numerator.
(b) Let $Q=\left[\begin{array}{ll}\boldsymbol{q}_{1} & \boldsymbol{q}_{2}\end{array}\right]$. The projection P is then

$$
P=Q Q^{\mathrm{T}}=\frac{1}{9}\left[\begin{array}{ccc}
5 & 4 & -2 \\
4 & 5 & 2 \\
-2 & 2 & 8
\end{array}\right]
$$

(c) The properties of a projection matrix are $P^{2}=P$ and $P^{\mathrm{T}}=P$. This gives

$$
(P \boldsymbol{b})^{\mathrm{T}}(\boldsymbol{b}-P \boldsymbol{b})=\boldsymbol{b}^{\mathrm{T}} P^{\mathrm{T}}(\boldsymbol{b}-P \boldsymbol{b})=\boldsymbol{b}^{\mathrm{T}}\left(P \boldsymbol{b}-P^{2} \boldsymbol{b}\right)=0 .
$$

7 (a) If $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}$ is a basis for \mathbf{R}^{3} then the matrix with those three columns is invertible (non-singular, full rank).
(b) If $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \boldsymbol{v}_{4}$ span \mathbf{R}^{3} then the column space is \mathbf{R}^{3}. The only possible rank for the matrix with those four columns is 3 .
(c) The transformations of the three basis vectors are

$$
\begin{aligned}
& T\left(\boldsymbol{q}_{1}\right)=\boldsymbol{q}_{1} \\
& T\left(\boldsymbol{q}_{2}\right)=\boldsymbol{q}_{2} \\
& T\left(\boldsymbol{q}_{3}\right)=\mathbf{0}
\end{aligned}
$$

so the transformation matrix T in the basis $\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \boldsymbol{q}_{3}$ is

$$
T=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

8

$$
\left|\begin{array}{llll}
3 & 0 & 0 & 2 \\
2 & 3 & 0 & 0 \\
0 & 2 & 3 & 0 \\
0 & 0 & 2 & 3
\end{array}\right|=3\left|\begin{array}{lll}
3 & 0 & 0 \\
2 & 3 & 0 \\
0 & 2 & 3
\end{array}\right|-2\left|\begin{array}{ccc}
2 & 3 & 0 \\
0 & 2 & 3 \\
0 & 0 & 2
\end{array}\right|=3 \cdot 27-2 \cdot 8=65 .
$$

For general $n>4$, the determinant is $\left|A_{n}\right|=3^{n}+(-1)^{n-1} 2^{n}$.

9 (a) The determinant of a permutation matrix P is 1 or -1 . The only possible pivot is 1 .
(b) For 3 by 3 permutations, the trace of P is 0,1 , or 3 . The eigenvalues are 1 and -1 when two rows are exchanged. Otherwise

$$
\left|\begin{array}{ccc}
-\lambda & 0 & 1 \\
1 & -\lambda & 0 \\
0 & 1 & -\lambda
\end{array}\right|=-\lambda^{3}+1=0 \Rightarrow \lambda=1,-\frac{1}{2} \pm i \frac{\sqrt{3}}{2} \quad\left(\text { or } e^{2 \pi i / 3}, e^{4 \pi i / 3}\right)
$$

so the four possible eigenvalues are $1,-1,-\frac{1}{2}+i \frac{\sqrt{3}}{2}$, and $-\frac{1}{2}-i \frac{\sqrt{3}}{2}$.
10 (a)

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 2 & 1 & 1 \\
0 & 0 & 3 & 1 \\
0 & 0 & 0 & 4
\end{array}\right], \quad A-3 I=\left[\begin{array}{cccc}
-2 & 1 & 1 & 1 \\
0 & -1 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Columns 1, 2, and 4 have pivots. Because of the nonzero bottom-right element in $A-3 I$, the fourth component of \boldsymbol{x}_{3} is definitely zero.
(b) In the same way as above, the special solutions for the matrices $A-1 I, A-2 I, A-3 I$, and $A-4 I$ must have $3,2,1$, and 0 zeros as the last components. The eigenvector matrix S is then upper triangular.

