Please circle your recitation:

1)	M2	$2-131$	P.-O. Persson	$2-088$	$2-1194$	persson
2)	M2	$2-132$	I. Pavlovsky	$2-487$	$3-4083$	igorvp
$3)$	M3	$2-131$	I. Pavlovsky	$2-487$	$3-4083$	igorvp
$4)$	T10	$2-132$	W. Luo	$2-492$	$3-4093$	luowei
5)	T10	$2-131$	C. Boulet	$2-333$	$3-7826$	cilanne
$6)$	T11	$2-131$	C. Boulet	$2-333$	$3-7826$	cilanne
$7)$	T11	$2-132$	X. Wang	$2-244$	$8-8164$	xwang
$8)$	T12	$2-132$	P. Clifford	$2-489$	$3-4086$	peter
$9)$	T1	$2-132$	X. Wang	$2-244$	$8-8164$	xwang
$10)$	T1	$2-131$	P. Clifford	$2-489$	$3-4086$	peter
$11)$	T2	$2-132$	X. Wang	$2-244$	$8-8164$	xwang

The ten questions are worth 10 points each.
Thank you for taking 18.06!

1 The 4 by 6 matrix A has all 2's below the diagonal and elsewhere all 1's:

$$
A=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
2 & 1 & 1 & 1 & 1 & 1 \\
2 & 2 & 1 & 1 & 1 & 1 \\
2 & 2 & 2 & 1 & 1 & 1
\end{array}\right]
$$

(a) By elimination factor A into L (4 by 4$)$ times U (4 by 6).
(b) Find the rank of A and a basis for its nullspace (the special solutions would be good).

2 Suppose you know that the 3 by 4 matrix A has the vector $\boldsymbol{s}=(2,3,1,0)$ as a basis for its nullspace.
(a) What is the rank of A and the complete solution to $A \boldsymbol{x}=\mathbf{0}$?
(b) What is the exact row reduced echelon form R of A ?

3 The following matrix is a projection matrix:

$$
P=\frac{1}{21}\left[\begin{array}{rrr}
1 & 2 & -4 \\
2 & 4 & -8 \\
-4 & -8 & 16
\end{array}\right] .
$$

(a) What subspace does P project onto?
(b) What is the distance from that subspace to $\boldsymbol{b}=(1,1,1)$?
(c) What are the three eigenvalues of P ? Is P diagonalizable?

4 (a) Suppose the product of A and B is the zero matrix: $A B=0$. Then the (1) space of A contains the (2) space of B. Also the (3) space of B contains the (4) space of A. Those blank words are
(1)
(2)
(3)
(4)
(b) Suppose that matrix A is 5 by 7 with rank r, and B is 7 by 9 of rank s. What are the dimensions of spaces (1) and (2) ? From the fact that space (1) contains space (2), what do you learn about $r+s$?

5 Suppose the 4 by 2 matrix Q has orthonormal columns.
(a) Find the least squares solution $\widehat{\boldsymbol{x}}$ to $Q \boldsymbol{x}=\boldsymbol{b}$.
(b) Explain why $Q Q^{\mathrm{T}}$ is not positive definite.
(c) What are the (nonzero) singular values of Q, and why?

6 Let S be the subspace of \mathbf{R}^{3} spanned by $\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$ and $\left[\begin{array}{r}5 \\ 4 \\ -2\end{array}\right]$.
(a) Find an orthonormal basis $\boldsymbol{q}_{1}, \boldsymbol{q}_{2}$ for S by Gram-Schmidt.
(b) Write down the 3 by 3 matrix P which projects vectors perpendicularly onto S.
(c) Show how the properties of P (what are they?) lead to the conclusion that $P \boldsymbol{b}$ is orthogonal to $\boldsymbol{b}-\mathrm{Pb}$.

7 (a) If $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}$ form a basis for \mathbf{R}^{3} then the matrix with those three columns is
\qquad -.
(b) If $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \boldsymbol{v}_{4}$ span \mathbf{R}^{3}, give all possible ranks for the matrix with those four columns. \qquad .
(c) If $\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \boldsymbol{q}_{3}$ form an orthonormal basis for \mathbf{R}^{3}, and T is the transformation that projects every vector \boldsymbol{v} onto the plane of \boldsymbol{q}_{1} and \boldsymbol{q}_{2}, what is the matrix for T in this basis? Explain.

8 Suppose the n by n matrix A_{n} has 3's along its main diagonal and 2's along the diagonal below and the $(1, n)$ position:

$$
A_{4}=\left[\begin{array}{llll}
3 & 0 & 0 & 2 \\
2 & 3 & 0 & 0 \\
0 & 2 & 3 & 0 \\
0 & 0 & 2 & 3
\end{array}\right]
$$

Find by cofactors of row 1 or otherwise the determinant of A_{4} and then the determinant of A_{n} for $n>4$.

9 There are six 3 by 3 permutation matrices P.
(a) What numbers can be the determinant of P ? What numbers can be pivots?
(b) What numbers can be the trace of P ? What four numbers can be eigenvalues of P ?

10 Suppose A is a 4 by 4 upper triangular matrix with $1,2,3,4$ on its main diagonal. (You could put all 1's above the diagonal.)
(a) For $A-3 I$, which columns have pivots? Which components of the eigenvector \boldsymbol{x}_{3} (the special solution in the nullspace) are definitely zero?
(b) Using part (a), show that the eigenvector matrix S is also upper triangular.

