18.06 Professor Strang/Ingerman Final Exam December 17, 2002

Your name is:

Please circle your recitation:

1)	M2	2-131	PO. Persson	2-088	2-1194	persson
2)	M2	2-132	I. Pavlovsky	2-487	3-4083	igorvp
3)	M3	2-131	I. Pavlovsky	2-487	3-4083	igorvp
4)	T10	2-132	W. Luo	2-492	3-4093	luowei
5)	T10	2-131	C. Boulet	2-333	3-7826	cilanne
6)	T11	2-131	C. Boulet	2-333	3-7826	cilanne
7)	T11	2-132	X. Wang	2-244	8-8164	xwang
8)	T12	2-132	P. Clifford	2-489	3-4086	peter
9)	T1	2-132	X. Wang	2-244	8-8164	xwang
10)	T1	2-131	P. Clifford	2-489	3-4086	peter
11)	T2	2-132	X. Wang	2-244	8-8164	xwang

The ten questions are worth 10 points each. Thank you for taking 18.06! **1** The 4 by 6 matrix A has all 2's below the diagonal and elsewhere all 1's:

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 & 1 & 1 \\ 2 & 2 & 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 1 & 1 & 1 \end{bmatrix}$$

- (a) By elimination factor A into L (4 by 4) times U (4 by 6).
- (b) Find the rank of A and a basis for its nullspace (the special solutions would be good).

- 2 Suppose you know that the 3 by 4 matrix A has the vector $\mathbf{s} = (2, 3, 1, 0)$ as a basis for its nullspace.
 - (a) What is the *rank* of A and the complete solution to $A\mathbf{x} = \mathbf{0}$?
 - (b) What is the exact row reduced echelon form R of A?

3 The following matrix is a *projection matrix*:

$$P = \frac{1}{21} \begin{bmatrix} 1 & 2 & -4 \\ 2 & 4 & -8 \\ -4 & -8 & 16 \end{bmatrix}.$$

- (a) What subspace does P project onto?
- (b) What is the *distance* from that subspace to $\boldsymbol{b} = (1, 1, 1)$?
- (c) What are the three eigenvalues of P? Is P diagonalizable?

4 (a) Suppose the product of A and B is the zero matrix: AB = 0. Then the (1) space of A contains the (2) space of B. Also the (3) space of B contains the (4) space of A. Those blank words are

(1)_____ (2)_____ (3)_____ (4)_____

(b) Suppose that matrix A is 5 by 7 with rank r, and B is 7 by 9 of rank s. What are the dimensions of spaces (1) and (2)? From the fact that space (1) contains space (2), what do you learn about r + s?

- **5** Suppose the 4 by 2 matrix Q has orthonormal columns.
 - (a) Find the least squares solution \hat{x} to Qx = b.
 - (b) Explain why QQ^{T} is not positive definite.
 - (c) What are the (nonzero) singular values of Q, and why?

- **6** Let *S* be the subspace of \mathbf{R}^3 spanned by $\begin{bmatrix} 1\\2\\2 \end{bmatrix}$ and $\begin{bmatrix} 5\\4\\-2 \end{bmatrix}$.
 - (a) Find an orthonormal basis $\boldsymbol{q}_1, \boldsymbol{q}_2$ for S by Gram-Schmidt.
 - (b) Write down the 3 by 3 matrix P which projects vectors perpendicularly onto S.
 - (c) Show how the properties of P (what are they?) lead to the conclusion that Pb is orthogonal to b Pb.

(a) If v_1, v_2, v_3 form a basis for \mathbf{R}^3 then the matrix with those three columns is _____.

 $\mathbf{7}$

- (b) If v_1, v_2, v_3, v_4 span \mathbb{R}^3 , give all possible ranks for the matrix with those four columns. ______.
- (c) If q_1, q_2, q_3 form an orthonormal basis for \mathbb{R}^3 , and T is the transformation that projects every vector v onto the plane of q_1 and q_2 , what is the matrix for T in this basis? Explain.

8 Suppose the *n* by *n* matrix A_n has 3's along its main diagonal and 2's along the diagonal below and the (1, n) position:

$$A_4 = \begin{bmatrix} 3 & 0 & 0 & 2 \\ 2 & 3 & 0 & 0 \\ 0 & 2 & 3 & 0 \\ 0 & 0 & 2 & 3 \end{bmatrix}.$$

Find by cofactors of row 1 or otherwise the determinant of A_4 and then the determinant of A_n for n > 4.

- **9** There are six 3 by 3 permutation matrices P.
 - (a) What numbers can be the *determinant* of P? What numbers can be *pivots*?
 - (b) What numbers can be the *trace* of *P*? What *four numbers* can be eigenvalues of *P*?

- 10 Suppose A is a 4 by 4 upper triangular matrix with 1, 2, 3, 4 on its main diagonal. (You could put all 1's above the diagonal.)
 - (a) For A 3I, which columns have pivots? Which components of the eigenvector \boldsymbol{x}_3 (the special solution in the nullspace) are definitely zero?
 - (b) Using part (a), show that the eigenvector matrix S is also upper triangular.