Crash course in nuclear power generation

Ruaridh Macdonald

PhD Student, Nuclear Science and Engineering (NSE)

Alumni Mentor

Who's this guy

Ruaridh (Rory) Macdonald

PhD student in NSE (Course 22)

Undergrad at MIT ('12); Mission 2012 student

PhD: Nuclear weapons verification

Masters: Toughened small, solid fuel, fluoride salt cooled reactors

Undergrad: Fast reactor design; nuclear data; computational methods

GRT at Simmons

Plan for talk

- 1) Brief introduction to how a plant works (5 mins)
- 2) Nuclear fuel cycle (10 mins)
- 3) Thorium vs. Uranium (5 mins)

Disclaimers: Won't present different reactor designs

Won't say too much about safety / accidents

I may say some inaccurate things

Feel free to send me questions:

rmacd@mit.edu

What's Power All About?

All electricity is about making electrons move

The easiest way to do that is to spin a magnet

(Almost) All industrial power is about creating rotary motion. Normally using **hot gas for a turbine**

Nuclear Power Plant vs. Coal Plan

Nuclear Heat

Nuclear power generates heat from fission of heavy isotopes

Uranium 233, 235 (238) Plutonium 239

Nuclear Heat

Nuclear power generates heat from fission of heavy isotopes

Uranium 233, 235, (238)

Plutonium 239

Plant Operation

Water coolant removes heat from fuel assembly (~200 / core) Fuel assembly made of fuel rods (~0.5 ton fuel / assembly) Assemblies come in a variety of shapes (hex, circle, square)

Plant Operation

Multiple options exist for the coolant:

Light water, heavy water, CO₂, helium, fluoride salts, lead, sodium, organic fluids, ...

In a thermal reactor, the coolant also 'slows down' neutrons.

Thermal or fast reactors

Reactors are designed to be stable systems

If you increase the power / temperature, the reactor physics will try to reduce power In some designs the opposite happens if you try to decrease power

Designs focus on passive safety. Makes it very difficult / expensive to change designs

Nuclear plants are designed for stable power (95%+ capacity factor)

Modern plants can change output (50-100% @ 5%/min, depending on design)

Fuel Cycle Options

Once through Cycle – Store all of the fuel assembly as waste Closed Cycle – 'Recycle' most of the fuel for reuse. Store the rest; Mixed / hybrid Cycle – 'Recycle' some of the fuel

Choices driven by:

- Technical abilities of different nations
 Types of reactor available
 Reprocessing tech. available
- 2) Politics of nuclear material control
 Reprocessing isolates high purity Pu-239 for nuclear weapons

Nuclear Fuel

Natural uranium is only made of 0.71% U-235, our main fuel. The rest is U-238

Not all countries have uranium deposits

It can be extracted from seawater (3.3E8 litres / kg U)

You have to enrich it after mining. 20% is legal limit.

Most plants use 3-5%. Most US permits are for 5%. Some reactors use nat. U

After being in the reactor the fuel will contain lots of new isotopes
U-238, U-235, Pu-239, Pu-other - can be reused in new fuel
Fission products - radioactive daughter particles
Minor actinides - heavy particles created by non-fission absorption

Most of these are radioactive but to different degrees and for different amounts of time Different strategies for storage

Waste Storage

Immediately after use - Spent fuel pool After 1->2 years - Interim storage After 10+ years - Multiple options

Geological Repository

Deep borehole

On-site storage

Once through

Simplest fuel cycle
Weapons material is never available
Produces the most waste
Least efficient use of fuel material

Still a good choice compared to other power sources
Politically accepted

Cheapest upfront cost

Current Burnup: 50 GWD/MTIHM:

Closed Cycle

Weapons material is never isolated Produces very little waste Effectively unlimited fuel supply

Politically difficult
Lots of R&D \$\$ needed

Mixed / hybrid Cycle

Full Cycle

Thorium

Thorium is mostly Th232

It is not fissile. It absorbs a neutron to become U233, which is fissile

It needs another fissile material to maintain a chain reaction

It is three times more abundant than uranium in the Earth's crust

Thorium reactors can be fast or thermal breeder reactors

It produces the most neutrons per fission

Has higher thermal conductivity and melting point Easier to run the reactor safely

Fewer minor actinides are produced

Remaining ones have shorter half life

Thorium vs. Uranium

U-233 is more likely to fission when irradiated than U-235 or Pu-239

~ Prob[fission if neutron hits U-233]

~ Prob[not-fission if neutron hits U-233]

Thorium

While the waste is shorter lived, some of it posses a significant health risk

High energy gamma radiation -> more difficult to shield

Most of this is from U-232 daughters, originally created from Th-232

This makes it difficult to reprocess the fuel as different facilities are needed

However, it also makes it more difficult to use Th in a weapon

Once U-233 is made, it has superior performance

However, neutrons are needed to get there

This requires fuel to stay in reactor for longer -> difficult with some designs

This makes Th unappealing in a once through cycle