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Abstract:  
 
The sustainability of metropolitan areas has been considered one of the most significant 
social challenges worldwide. Among the various policy options to achieve sustainable 
metropolitan growth, smart-growth strategies attract increasing interests due to their 
financial and political feasibility. Leveraging the interconnection between land use and 
transportation, smart-growth strategies aim to improve urban life and promote 
sustainability by altering the built environment with such mechanisms as transit-oriented 
development, mixed-use planning, urban-growth boundary, etc. My focus in this study is 
to understand the role that the built environment can play in sustainable metropolitan 
growth. Unlike previous studies that rely primarily on household survey data in the land 
use-transportation research, I explore the potential for utilizing spatially detailed 
administrative data to calibrate urban models and support metropolitan planning. 

I structure this study in three separate essays. In these essays, with several newly 
available fine-grained administrative datasets and advanced Database Management 
System (DBMS) and Geographic Information Systems (GIS) tools, I compute a set of 
improved indicators to characterize the built environment at disaggregated level and 
incorporate these indicators into quantitative models to investigate the relationships 
between the built environment, household vehicle usage and residential property values. I 
select the Boston Metropolitan Area as the study area. 

The focus of the first essay is to understand the built-environment effect on 
household vehicle usage as reflected by the millions of odometer readings from annual 
vehicle safety inspections for all private passenger vehicles registered in the Boston 
Metropolitan Area. By combining the safety inspection data with fine-grained GIS data 
layers of common destinations, land use, accessibility, and demographic characteristics, I  
develop an extensive and spatially detailed analysis of the relationship between annual 
vehicle miles traveled (VMT) and built-environment characteristics. The empirical results 
suggest that there are significant associations between built-environment factors and 
household vehicle usage. In particular, distance to non-work destinations, connectivity, 
accessibility to transit and jobs play significant roles in explaining the VMT variations. 
The research findings can help analysts understand the environmental implications of 
alternative regional development scenarios, and facilitate the dialogue among regional 
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planning agencies, local government and the public regarding sustainable regional 
development strategies.  

In the second essay, I investigate the built-environment effect on residential 
property values with a cross-sectional analysis. The major dataset is the single-family 
housing transaction records from city and town assessors in the Boston Metropolitan 
Area assembled by the Warren Group. I use factor analysis to extract several built-
environment factors from a large number of built-environment variables, and integrate 
the factors into hedonic-price models. Spatial econometric techniques are applied to 
address the spatial autocorrelation. The empirical results suggest that the transaction price 
of single-family properties is positively associated with accessibility to transit and jobs, 
connectivity, and walkability, and negatively related to auto dominance. The built-
environment effects depend on neighborhood characteristics. In particular, households 
living in neighborhoods with better transit accessibility tend to pay a higher premium for 
smart-growth type built-environment features. The research findings suggest that most 
smart-growth strategies are positively associated with residential property values. 
Although built-environment characteristics advocated by smart-growth analysts do not 
have universal appeal to households, they no doubt satisfy an important market segment. 

In the third essay, I examine the role that selectivity and spatial autocorrelation 
could play in valuing the built environment. Using transaction and stock data for single-
family properties in the City of Boston from 1998 to 2007, I integrate a Heckman-
selection model and spatial econometric techniques to account for sample selection and 
spatial autocorrelation, and estimate the willingness-to-pay for built-environment 
attributes. The empirical results suggest that the built environment can influence both the 
probability of sale and transaction price of properties. Failing to correct for sample 
selection and spatial autocorrelation leads to significant bias in valuing the built-
environment. The bias might misguide policy recommendations for intervening urban 
development patterns and distort estimations of the value-added effect of infrastructure 
investment for land-value-capture programs. 
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CHAPTER ONE: INTRODUCTION 

In the last few decades, the growing concentration of greenhouse gas (GHG) in the atmosphere 

and associated negative effects of global warming are causing increasing concerns all over the 

world. Meanwhile, the world is undergoing the largest wave of urban growth in history. In 2008, 

one half of the world’s population (about 3.35 billion) lives in urban areas (PRB 2008). This 

number is projected to swell to about 5 billion by 2030 (PRB 2008). The rapid growth of urban 

population underscores the critical role of metropolitan areas in global sustainability. The 

transportation sector represents roughly one-quarter of the world’s energy-related GHG 

emissions (Price et al. 2006). Transportation-related challenges, such as congestions, emissions, 

and the exhaustion of non-renewable resources are imposing tremendous pressure on the 

sustainability of metropolitan areas. Various policy options aiming to reduce travel demand and 

achieve sustainable metropolitan growth are currently being discussed. Technology-driven 

approach, such as biofuel, hybrids and electric cars, can improve the fuel-efficiency of driving 

and reduce its carbon contribution, but it takes time and efforts. Financial (dis)incentive, such as 

fuel tax and congestion tolls, has proven to be an efficient tool in influencing household travel 

behavior, but it often faces political barriers to be implemented. In addition, many municipalities 

have adopted smart-growth strategies, trying to alter the physical environment that requires 

households to drive. None of these policy options is sufficient. We will likely need a suite of 

technology, policy and pricing approaches to adequately reduce transportation emissions and 

achieve sustainable metropolitan growth (Zegras et al. 2009). 

Among these policy options, smart-growth strategies invite special interest due to their 

financial and political feasibility, and the potential long-term effects as they are slowly 

implemented and produce changes over time. Smart growth aims to improve urban life and 
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promote sustainability by leveraging the land use – transportation interconnections and altering 

the built environment via such mechanisms as urban growth boundary, mixed-use planning and 

transit-oriented development. The major goals of these planning initiatives concentrate on two 

aspects: first, to promote sustainable transportation through land use planning, and, second, to 

encourage efficient urban development through strategic transportation investment. The 

coordination of land use and transportation planning is crucial in smart growth. Yet the mixed 

success of smart-growth strategies highlights the importance of fully understanding the complex 

interactions between land use and transportation, and, more generally, understanding the role that 

the built environment can play in sustainable metropolitan growth. 

Previous studies on the land use-transportation interconnection tend to focus on two 

complementary relationships: the impact of the built environment on travel behavior and the 

impact of transportation (as part of the built environment) on development patterns. The former 

relationship is widely investigated in the transportation field. Most researchers find that many 

built-environment characteristics can significantly influence household travel behavior. 

However, there are still extensive debates regarding the magnitude of the built-environment 

effect, and whether or not it is feasible to tap this effect to reduce travel demand. For a detailed 

review, see Crane (2000); Ewing and Cervero (2001); Frank and Peter (2001); and Handy 

(1996). The latter relationship has its origin in urban economics and location theory. The 

classical monocentric city model developed by von Thunen (1966), Alonso (1964), Muth (1969), 

and Mills (1972), describes the equilibrium land-use pattern in a monocentric city. In this model, 

all land users benefit from increased accessibility, thus bid to be closer to the city center to save 

transportation cost, which leads to a zonal distribution of land uses around the center. Analysts 
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widely believe that the transportation system could influence urban development in terms of 

location choice, property value, or characteristics of development.  

The majority of previous studies on the land use-transportation interconnection, 

especially those focusing on the built-environment effect on travel behavior, rely on household 

surveys to carry out empirical analyses, because survey data provide detailed description of 

demographic, residence and travel attributes to support modeling. However, this approach has 

several drawbacks. The high expense of individual surveys tends to limit the sample size and 

frequency of surveys – commonly they are limited to a few thousands observations and are 

updated every 5-10 years. Privacy concerns often limit the geographic specificity with which 

details about residence and trips can be revealed. Accordingly, in planning practice, planning 

agencies have lacked the data and the analytic techniques needed to make informed decisions in 

both long-term planning to achieve sustainable metropolitan growth and short-term reaction to 

make the city more responsive to real time changes. 

Thanks to the rapid development of spatial data infrastructure, planning agencies are 

entering an era in which a large volume of administrative data with spatial details are available, 

for example, vehicle safety-inspection records from the Registry of Motor Vehicles, housing-

transaction records from the Registry of Deeds, housing-assessment records from the Assessing 

Department, transit-fare card information from the transit agency, and cell phone-usage records 

from mobile companies. These administrative datasets have distinct advantages over the 

traditional survey data used in land-use transportation research: large temporal and spatial 

coverage, continuous data flow, low marginal cost, accuracy, automatic collection and central 

storage, etc. Due to these unique features, there exists a great potential for utilizing such novel 

datasets to support metropolitan planning and promote sustainable growth. Meanwhile, advanced 
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data manipulation and analysis methodologies and techniques are required before the full value 

of administrative data can be realized.  

My primary objective in this study is to investigate the bidirectional relationships 

between land use and transportation, and understand the role that the built environment can play 

in sustainable metropolitan growth. Unlike previous studies relying on household survey data, I 

explore the potential of utilizing administrative data to calibrate urban models and support 

metropolitan planning with the help of advanced information technologies such as Database 

Management System (DBMS) and Geographic Information System (GIS) tools.  

The main body of the study comprises three separate essays. The first essay focuses on 

the impact of the built environment on household vehicle usage. The second and third essays 

focus on the impact of the built environment on residential property values. In these essays, with 

several newly-available, fine-grained administrative datasets and advanced DBMS and GIS 

tools, I compute a set of improved indicators to characterize the built environment at a 

disaggregated level and incorporate these indicators into quantitative models to investigate the 

relationships between the built environment, household vehicle usage and residential property 

values.  I select the Boston Metropolitan Area as the study area. 

The first essay examines the built-environment effect on household vehicle usage using 

the millions of odometer readings from annual vehicle safety inspections for all private 

passenger vehicles registered in the Boston Metropolitan Area. By combining the safety 

inspection data with fine-grained GIS data layers of common destinations, land use, accessibility, 

and demographic characteristics, I develop an extensive and spatially detailed analysis of the 

(cross-sectional) relationship between annual vehicle miles traveled and built-environment 

characteristics. The research findings of the first essay could help us understand the 
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environmental implications of alternative regional development scenarios and facilitate the 

dialogue between regional planning agency, local government, and the public regarding 

sustainable metropolitan growth. 

In the second essay, I investigate the built-environment effect on residential property 

values with a cross-sectional analysis. The major dataset is the single-family housing transaction 

records from city and town assessors in the Boston Metropolitan Area assembled by the Warren 

Group. I use factor analysis to extract five built-environment factors from a large number of 

built-environment variables, and integrate the factors into hedonic-price models. I apply spatial 

econometric techniques to account for spatial autocorrelation effects. This study can help 

understand the property-value effect of land use change and assess the impact of smart growth on 

local neighborhoods. 

In the third essay, I explore the impact of selectivity and spatial autocorrelation in valuing 

the built environment, using the transaction records from the Suffolk County Registry of Deeds 

and the assessing records from the Boston Assessing Department for single-family properties in 

the City of Boston.  I apply the Heckman two-step procedure (Heckman 1976) to correct for 

sample selection bias and integrate spatial econometric techniques into the Heckman-selection 

model to solve for spatial autocorrelation. I further investigate the magnitude of the bias caused 

by sample selection and spatial autocorrelation by comparing the willingness-to-pay for the same 

built-environment attribute computed from conventional hedonic-price model and Heckman-

selection models. This bias might misguide policy recommendations for impacting urban 

development patterns and distort estimations of the value-added effect of infrastructure 

investment for land value capture programs.  
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In Chapter 2, I describe the methodology and outcomes to quantify the built environment 

in the Boston Metropolitan Area, which will be used in all three essays. To avoid redundancy, I 

make this part a separate chapter. I use Chapter 3, 4, and 5 to present the three research essays 

respectively. Finally, in Chapter 6, I summarize the research findings and discuss policy 

implications and future research directions.
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CHAPTER TWO: MEASURING THE BUILT ENVIRONMENT IN THE BOSTON 

METROPOLITAN AREA  

One prerequisite to model the built environment is to quantify it. In this chapter, I present the 

datasets, methodology, and variables to describe the built environment in the Boston 

Metropolitan Area. To deal with the potential multicollinearity among built-environment 

variables, I apply factor analysis to reduce the large set of built-environment variables to several 

factors to explain source of spatial differentiation within the Metro. 

2.1   BUILT-ENVIRONMENT DATASETS AND SPATIAL UNIT OF ANALYSIS 

I select the Boston Metropolitan Area as the study area. Metro Boston exhibits a rich set of built-

environment characteristics, which makes it a compelling case for empirical analyses. Figure 1 

maps Metro Boston and the City of Boston. 
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Source: The author 
 
Figure 1: Metro and City of Boston 

In describing the built environment of Metro Boston, I benefit from a set of built-

environment datasets with exceptional spatial detail, which are mainly from MassGIS, the State’s 

Office of Geographic and Environmental Information. MassGIS utilized Dun and Bradstreet 

business location database to locate household non-work destinations, and geocoded these 

businesses to a point layer, which were then aggregated by business category into business 

counts within each 250x250m grid cell. Institutional destinations, such as schools, hospitals, and 

parks, exist as independent data layers developed and maintained by MassGIS.  The road-

inventory database with detailed information on road networks in the region is from the 

Massachusetts Department of Transportation. MassGIS generated population and household data 

Metro Boston City of Boston 
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from the 2000 Census, constrained them to those areas identified as residential by the 2000 land 

use dataset, and assigned them to 250mx250m grid cells.  

The Modifiable Areal Unit Problem (MAUP) is a well-known challenge in studies on 

spatial phenomena, which may lead to inconsistency in measurement results and statistical 

analyses. Zhang and Kukadia (2005) summarize three commonly recognized approaches to 

resolve the MAUP issues: (a) use disaggregate data where possible; (b) report scope and 

magnitude of the MAUP; and (c) use behavior-based selection of scale and areal unit definition. 

Robsen identifies the grid cell approach as a possible means to mitigate the MAUP (Robsen 

1969). To deal with the MAUP, the spatial unit used in this study is a 250x250m grid cell layer 

developed by MassGIS. A grid cell contains an area just over 15.4 acres, which is sufficiently 

small to capture spatial details and neighborhood effects. Meanwhile, using the grid cell as a 

basic study unit, I can take advantage of powerful raster analysis tools in GIS software. For each 

grid cell, I define a catchment area (neighborhood) as the 3x3 nearest grid cells, compute the 

variable of interest for the catchment area, and assign the value to the grid cell in the middle. The 

750x750m catchment area has a size that is close to the “transportation impact area”, which is 

conventionally defined as a circle with a 1⁄4-mile radius, a size that has been backed by 

behavioral and empirical research (Untermann 1984). The employment of a catchment area also 

helps create a smooth surface, reducing noise in the raw data. 

Compared with previous research, my study is performed at a much more fine-grained 

scale. Table 1 compares the grid cells I use and some spatial units that are widely used in land 

use and transportation research for Metro Boston.  
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Table 1: Comparison of Spatial Units for Metro Boston 

    Grid Cell TAZ Block Group Census Tract 
No. of observations 119,834 2,727 3,323 894 
No. of observations with population 73,714 2,606 3,319 894 
Vehicle count for populated units     
 Min 0 0 1 1 
 Max 3,117 3,022 11,593 13,631 
 Mean 32 941 744 2,764 
 Std. Dev. 49 603 514 1,514 
Household count for populated units     
 Min 0 0 0 0 
 Max 1,624 2,318 2,211 4260 
 Mean 22 631 495 1,839 
 Std. Dev. 48 391 246 713 
Individual count for populated units     
 Min 1 1 2 70 
 Max 3,673 4,969 6,131 12,051 
 Mean 58 1,654 1,297 4,817 
  Std. Dev.  112 992 626 1,825 

Source: Calculated by the author. 
 

2.2   BUILT-ENVIRONMENT VARIABLES 

For this study, I computed 27 built-environment variables. Because spatial distribution of 

destinations can significantly influence travel costs, accessibility to common destinations is an 

important determinant of vehicle usage and properties values. I compute a gravity-type measure 

of job accessibility at the TAZ level to represent work distance, which takes the following form 

known as the Hansen accessibility model (1959). I assign each grid cell the value of the TAZ that 

it belongs to. 

• Job accessibility: )( ij
j

jj CfOA ∑= , where )*exp()( ijij CCf β−= ; Oj is the number 

of jobs in TAZ j; f(Cij) is an impedance function; Cij is the network distance between 
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TAZ i and j; β is set to 0.1, based on Zhang’s calibration using an Activity–Travel 

Survey conducted by the Central Transportation Planning Staff for the Boston region 

(2005). 

MassGIS computed distances to a variety of non-work destinations at a 250m*250m grid 

cell level using GIS tools. I select eight types of the most important non-work destinations based 

on average trip rate from the 2001 National Household Transportation Survey, including: 

• Distance to shopping mall: Euclidian distance to the nearest shopping mall 

• Distance to grocery store: Euclidian distance to the nearest grocery store 

• Distance to school: Euclidian distance to the nearest school 

• Distance to hardware store: Euclidian distance to the nearest hardware store 

• Distance to restaurant: Euclidian distance to reach at least 4 restaurants 

• Distance to church: Euclidian distance to reach at least 4 churches 

• Distance to dentist: Euclidian distance to reach at least 4 dentists 

• Distance to gym: Euclidian distance to reach at least 4 gyms 

Other built-environment variables describe density, land-use mix, road networks, transit 

proximity, and pedestrian environment, respectively. They also have the potential to affect travel 

costs for different travel modes. Among them, I computed distance-related variables directly for 

the target grid cell. I computed other measures for the 9-grid-cell catchment area and then 

assigned the value to the target grid cell. 

• Population density: population/residential area 

• Land-use mix: the land-use mix measure is based on the concept of entropy — a 

measure of variation, dispersion or diversity (Turner, Gardner and O’Neill, 2001). In 
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the first step, I compute it for each grid cell, using )ln(/)ln(* JPP j
j

j∑− , where Pj is 

the proportion of land in the jth land-use category and J is the total number of land-

use categories considered. In this study, J=5: single family, multi-family, commercial, 

industrial, and recreation and open space. A value of 0 means the land in the grid cell 

is exclusively dedicated to a single use, while a value of 1 suggests perfect mixing of 

the five land uses. Then, I assign each grid cell the average value of the nine grid cells 

in the catchment area. 

• Intersection density: number of intersections / area 

• Density of 3-way intersections: number of 3-way intersections / area 

• Density of 4-way intersections: number of 4-way intersections / area 

• Road density: total length of road / area 

• Percent of 4-way intersections: number of 4-way intersections / number of 

intersections 

• Percent of roads with access control: total length of road with access control / total 

road length 

• Average road width: ∑(width of road segment * length of road segment) / total road 

length 

• Percent of roads with over 30-mph speed limit: total length of  road segment with 

over 30-mph speed limit / total road length 

• Distance to highway exit: Euclidian distance to the nearest highway exit 

• Percent of roads with curbs: total length of  road segment with curbs / total road 

length 
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• Percent of roads with sidewalks: total length of  road segment with sidewalks / total 

road length 

• Average sidewalk width: ∑(sidewalk width of road segment * length of  road 

segment) / total road length 

• Distance to subway station: Euclidian distance to the nearest subway station 

• Distance to commuter rail station: Euclidian distance to the nearest commuter rail 

station 

• Distance to MBTA bus stop: Euclidian distance to the nearest MBTA bus stop 

• Distance to MBTA parking lot: Euclidian distance to the nearest MBTA parking lot 

I use GIS techniques and database management tools extensively in the computation of 

these built-environment variables.  

2.3   FACTOR ANALYSIS FOR BUILT-ENVIRONMENT VARIABLES 

Due to the multi-dimensional nature of the built environment, one central issue in studies of the 

built environment is the selection of relevant variables from a large set of potentially important 

variables. Furthermore, many built-environment variables tend to be closely correlated. For 

example, relatively dense neighborhoods tend to have a greater variety of land uses, smaller 

blocks, and so on. A regression model with highly correlated variables is likely to result in 

numerous insignificant or incorrectly-signed coefficients. To deal with the multicollinearity, I 

use factor analysis to reduce the total number of built-environment variables to a small set of 

factors and include factor scores in regression models. The idea is that the multicollinearity 

between variables exists because they are indicators of common factors, and that these 

underlying factors are important determinants. As linear combinations of the built-environment 
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variables, built-environment factors represent these latent underlying forces. For example, factor 

analysis allows variables like “average sidewalk width”, “percent of roads with curbs”, and 

“percent of roads with sidewalks” to be linearly combined to represent a dimension that we 

might call  “walkability”. 

I perform a principle component analysis with Varimax rotation using the 27 built-

environment variables. The top 5 factors with initial eigenvalues greater than 1 explain 69.8% of 

variance in original variables. In other words, there is only a 30% loss in information incurred by 

the 82% reduction in the number of built-environment variables from 27 to 5. Factor loadings for 

built-environment variables are presented in Table 2.  
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TABLE 2:  Factor Loadings of Built-Environment Factors 

  Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 
  Variables Distance to 

non-work 
destinations 

Connectivity Inaccessibility 
to transit and 

jobs 

Auto 
dominance 

Walkability 

1 Distance to restaurant 0.784      
2 Distance to mall 0.764      
3 Distance to hardware store 0.746      
4 Distance to grocery 0.733      
5 Distance to dentist 0.688  0.398    
6 Distance to gym 0.676      
7 Distance to church 0.674      
8 Distance to school 0.645      
9 Land-use mix -0.480      
10 Density of 4-way intersections  0.872     
11 Intersection density  0.849     
12 Density of 3-way intersections  0.809     
13 Population density  0.785     
14 Road density -0.353 0.765     
15 Percent of 4-way intersections  0.609     
16 Distance to bus stop   0.833    
17 Distance to commuter rail station   0.810    
18 Distance to subway station   0.801    
19 Distance to MBTA parking lot   0.775    
20 Job accessibility  0.486 -0.636    
21 Percent of roads with access control    0.910  
22 Average road width    0.875  
23 Percent of roads with 30+ speed limit    0.856  
24 Distance to highway exit    -0.362  
25 Percent of roads with sidewalks      0.910
26 Percent of roads with curbs      0.908
27 Average sidewalk width  0.583    0.602
* I suppress factor loadings with absolute value less than 0.35 for interpretation convenience. 
Source: Calculated by the author using SPSS. 

 

Factor 1 has high loadings on variables for distance to non-work destinations and land- 

use mix, and therefore describes primarily “distance to non-work destinations”. Grid cells with 

higher scores in factor 1 tend to have longer distance to non-work destinations, and thus are 
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hypothesized to have higher VMT (others factors held constant). Factor 2 places the highest 

weights on street network layout and population density. I label it as “connectivity”.  Good 

connectivity can improve the connection of people and places and shorten local trips (Crane 

1996), thereby reducing household vehicle usage. Factor 3 describes the difficulty of accessing 

transit systems and jobs, with positively high loadings on distance to transit variables and 

negatively high loading on job accessibility. Factor 3 could be positively associated with VMT. 

Factor 4 leans to the traffic management side, representing the degree of auto dominance, that is, 

the extent to which automobile movement is facilitated in the locality. It could decrease travel 

costs of the auto mode, thus increasing vehicle usage. The fifth factor “walkability” describes the 

pedestrian environment, which can reduce the travel costs of walking, thus decreasing VMT. 

Figures 2 - 6 show the spatial patterns of built-environment factors. Compared with grid cells in 

the suburbs, grid cells in urban centers have better accessibility to non-work destinations, jobs, 

and transit systems, better connectivity, and better pedestrian environment as expected1. Grid 

cells with higher scores in the “auto dominance” factor tend to be located along major 

transportation corridors. Note the extent to which the factors vary from one another and spatially 

at different local and regional scale. 

 

The built-environment indicators computed in this chapter will be integrated into quantitative 

models in the following three chapters to investigate the impact of the built environment on 

household vehicle miles traveled and residential property values.       

                                                 
1 It should be noted that Figure 4 shows some boundary effect in the “inaccessibility to transit and jobs” factor. The 
boundary effect may influence statistical results and will be further discussed in Chapter 3. 
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Source: The author   
Figure 2: Metro Boston Built-Environment Factors – Distance to Non-Work Destinations 
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Source: The author 
Figure 3: Metro Boston Built-Environment Factors - Connectivity 
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Source: The author 
Figure 4: Metro Boston Built-Environment Factors – Inaccessibility to Transit and Jobs 
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 Source: The author 
Figure 5: Metro Boston Built Environment Factors – Auto Dominance 
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Source: The author 
Figure 6: Metro Boston Built-Environment Factors - Walkability 
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CHAPTER THREE: VEHICLE MILES TRAVELED AND THE BUILT 

ENVIRONMENT: EVIDENCE FROM VEHICLE SAFETY INSPECTION DATA  

 

3.1   INTRODUCTION 

In the last few decades, the rapid growth of Greenhouse Gas (GHG) concentration in the 

atmosphere and associated negative effects of global warming are causing increasing concerns 

about the sustainability of the world. The transportation sector is currently responsible for one- 

quarter of the world’s energy-related GHG emissions (Price et al.  2006), and personal mobility 

consumes about two thirds of the total transportation energy use (IEA 2004). As an important 

source of GHG emissions, transportation plays a critical role in the global efforts to achieve 

sustainable development. Multiple strategies to reduce transportation energy use and emissions 

are currently explored by analysts and policy makers, such as fuel-efficient vehicles, financial 

(dis)incentives, and various smart-growth policies. Among these policy options, smart-growth 

policies invite special interests due to their financial and political feasibility. 

Central to smart-growth strategies is leveraging the interconnection between the built 

environment and travel behavior to reduce travel demand. The built environment comprises 

urban design, land use, and the transportation system, and encompasses patterns of human 

activity within the physical environment (Handy et al. 2002). Smart-growth policies try to 

reshape household travel behavior by changing the built environment via such mechanisms as 

regional planning, zoning, and provisions of alternative transportation modes.  

The relationship between transportation and the built environment has long been studied 

and is recognized as complex, as reviewed in Handy (1996), Boarnet and Crane (2000), Crane 

(2000), Ewing and Cervero (2001), and Frank and Engelke (2001). There continues to be debates 
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about whether the relationship is “strong” or “weak” (Krizek 2005). Household or individual-

based survey data (for sampled individuals and households) are the preferred instrument for 

empirical analysis of travel behavior since the unit of analysis, an individual, can be readily 

associated with the mode availability, travel cost, demographic factors, and built-environment 

measures. However, the high expense of individual travel surveys tends to limit sample sizes, 

and privacy concerns often limit the geographic specificity with which trip origins and 

destinations can be revealed. These issues constrain the capability of survey-based studies in 

providing confidence in statistical accuracy at the neighborhood level.  

Another line of research characterizes both the built environment and travel using 

aggregate measures. Newman and Kenworthy (1999) analyze the relationship between density 

and energy use for an international sample of cities and find significant negative correlation 

between density and energy use. However, besides the fundamental problem of comparing places 

with different cultural, political, and historical contexts, their study is also criticized for its use of 

simple measures of urban form and travel (Handy 1996). Holtzclaw (1994) uses odometer 

reading data from biennial auto emission inspections to derive estimates of total travel for 28 zip 

code zones in California and relate them to built-environment measures. The result shows that 

annual vehicle miles traveled is significantly associated with neighborhood density. Miller and 

Ibrahim (1998) carry out an empirical investigation into the relationship between the built 

environment and automobile travel at traffic analysis zone (TAZ) level in the Greater Toronto 

Area. They find that zonal VMT per worker increases with increasing distance from the CBD, 

and/or other major employment zones within the urban area. Holtzclaw et al. (2002) use socio-

demographic variables to control for population differences across different zones and find that 
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auto ownership and mileage per car are functions of neighborhood urban design and socio-

economic characteristics in the Chicago, Los Angles, and San Francisco.  

The aggregate approach has provided promising evidence of the potential effectiveness of 

smart-growth policies in reducing travel demand (Handy 1996).  However as many researchers 

have suggested, this approach also has significant shortcomings: (1) It does not allow for an 

exploration of underlying factors and the mechanisms by which the built environment influences 

individual decisions; (2) The zones used in previous aggregate studies are usually very large in 

size. For example, Newman and Kenworthy (1999) use city-level data in their study and 

Holzclaw et al. (2002) use zip-code-zone as their unit of analysis. At such an aggregated level, 

the intra-zone variations of the built environment and demographic measure could be too large to 

ignore; (3) Previous studies either omit or include very few demographic variables in their 

statistical analyses, thus make limited effort to control the residential self-selection problem and 

construct causal relationships (Brownstone 2008); and (4) spatial autocorrelation may affect the 

results significantly but analysts neglected this effect. 

In this study, I take advantage of a newly-available unique dataset, the odometer readings 

from annual safety inspections for all private passenger vehicles registered in Metro Boston to 

develop an extensive and spatially-detailed analysis of the built environment and household 

vehicle usage. I use Vehicle Miles Traveled (VMT) as the primary variable of interest, which is a 

convenient measure that reduces the multi-dimensional travel demand (number of trips, the 

spatial distribution of these trips, the modes and routes chosen to execute these trips) to a single 

variable (Miller and Ibrahim 1998). The basic spatial unit for my analysis is a statewide 250 

meter (m) by 250m grid-cell layer developed by MassGIS, the State’s Office for Geographic and 

Environmental Information. I perform multivariate regression analyses at the grid cell level to 
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identify built-environment and demographic factors that are significantly associated with 

household vehicle usage. Spatial econometric techniques are applied to account for potential 

spatial autocorrelation. 

Given the nature of my analysis, I raise two cautions at the outset. First, my objective is 

not to project the impact of a given policy on vehicle usage, which requires a dynamic model of 

land use-transportation interaction (Miller and Ibrahim 1998). My more modest objective is to 

examine the spatial distribution of travel behavior within a metropolitan area, which can be seen 

as the outcome of this dynamic land use-transportation process, and to clarify the irreducible 

spatial components of household travel behavior. The second issue concerns the ecological 

fallacy. In particular, I focus on the spatial patterns of the relationship between the built 

environment and household vehicle usage. Even though I use small grid cells (of 15.4 acres 

each) as the basic spatial unit, they measure behavior aggregated across multiple households in 

the grid cell. Hence, the underlying factors and the behavior mechanisms by which the built 

environment influences individual decisions cannot be revealed by my study. 

3.2   STUDY AREA AND DATA 

I select the Boston Metropolitan Area as the study area for the empirical analyses. Metro Boston 

exhibits a variety of built-environment characteristics, which makes it a compelling case for the 

study.  

In this study, I use a unique VMT dataset, the annual vehicle safety inspection records 

from the Registry of Motor Vehicles (RMV) to estimate annual mileage for every private 

passenger vehicle registered in Metro Boston. Safety inspection is mandated annually beginning 

within one week of registering a new or used vehicle. The safety inspection utilizes computing 

equipment that records vehicle identification number (VIN) and odometer reading and transmits 
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these data electronically to the RMV where they can be associated with the street address of the 

place of residence of the vehicle owner. MassGIS obtained access to the safety inspection 

records from the RMV for a “Climate Roadmap” project that details possible plans for 

significant reductions in GHG emissions for 2020-2050 in Massachusetts. MassGIS compared 

the two recent vehicle inspection records for all private passenger vehicles, calculated the 

odometer reading difference, and pro-rated it based upon the time period between inspection 

records so as to reflect the estimated annual mileage traveled. MassGIS then geocoded each 

vehicle to an XY location approximating the owner's address using GIS tools, and tagged each 

VIN with the 250x250m grid cell ID containing that address. MassGIS then provided the VINs, 

XY locations, and grid cell IDs, to MIT for use in our research. Overall, 2.47 million private 

passenger vehicles are included in this dataset. Among them, 2.10 million vehicles (84.9%) have 

credible odometer readings. For the remaining 0.37 million vehicles, I know their places of 

garaging but do not have reliable odometer readings, either because the reported reading was 

determined to be in error or because two readings sufficiently far apart were not available. 

Although this dataset lacks individual trip details, it does provide a very high percentage 

sample of total passenger vehicle miles traveled. Furthermore, unlike travel surveys, this dataset 

does not depend on the subjects' willingness or ability to remember and report their driving. The 

Energy Information Administration (EIA)'s 1994 Residential Transportation Energy 

Consumption Survey shows that self-reported VMT values are 13 percent greater than odometer-

based VMT in urban areas. EIA suggests that odometer-based VMT should be obtained if 

possible (Schipper and Moorhead 2000). Holtzclaw et al. (2002) use a similar dataset in their 

study, odometer readings from auto emission inspections (smog check), but since California 



  

 36

exempts new vehicles from smog checks for the first two years, their measure systematically 

biases VMT downwards for zones with large numbers of new vehicles (Brownstone 2008). 

My study also benefits from built-environment data with exceptional spatial detail, which 

are mainly from MassGIS. Detailed descriptions about the datasets and the spatial unit to 

compute built-environment measures can be found in Chapter 2.  

3.3   METHODOLOGY 

In this section, I present the methodology employed in this study. 

3.3.1 Model Specifications 

In the base model, I specify VMT as a function of built-environment and demographic factors.  

iikkijji DEMBEVMT εβα ++= ∑∑                                                                              (1) 

where VMTi is the zonal average VMT per vehicle, per household or per capita for the catchment 

area of grid cell i; BEi is a vector of built-environment variables of grid cell i, and DEMi is a 

vector of demographic variables of the block group that grid cell i falls in.  

Many previous analysts (e.g., Ewing and Cervero 2001) suggest that built environment 

can influence travel behavior. This effect can be partitioned into direct influences associated with 

the characteristics of the neighborhood where the household locates and indirect influences 

associated with the travel behavior and built-environment characteristics of neighboring areas. I 

estimate both spatial lag model and spatial error models (Anselin 1993) to capture this spatial 

effect. Spatial lag suggests a possible diffusion process -- VMT of one place is affected by the 

independent variables of this place as well as neighboring areas. With spatial lag in an OLS 

regression, the estimation result will be biased and inefficient. Spatial error is indicative of 
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omitted independent variables that are spatially correlated. With spatial error in an OLS 

regression, the estimation result will be inefficient. The spatial lag model can be specified as:  

iikkijjVMTi DEMBEWVMT
i

εβαρ +++= ∑∑                                                               (2) 

where ρ is a spatial-lag correlation parameter, and ε is an Nx1 vector of i.i.d. standard normal 

errors. The spatial error model can be specified as: 

ii

iikkijji

i
W

DEMBEVMT

μλε

εβα

ε +=

++= ∑∑                                                                              (3) 

where λ is a spatial-error correlation parameter, and µ is an Nx1 vector of i.i.d. standard normal 

errors. 

In Equations (2) and (3), W is the NxN matrix of spatial weights, which I developed 

assuming a constant spatial dependence among grid cells up to a maximum distance. I used the 

maximum Euclidean distance of 750m. Both models can be estimated by maximum likelihood. 

3.3.2 VMT Variables 

In this study, I explore the built-environment effects on three VMT measures: (1) VMT per 

vehicle, (2) VMT per household, and (3) VMT per capita. VMT per vehicle is a single indicator 

of individual car usage, while VMT per household and VMT per capita are also influenced by 

auto ownership. I compute the VMT per vehicle for each grid cell based on vehicle-level annual 

mileage estimates from MassGIS. Some grid cells have very few vehicles. I apply the spatial 

interpolation function of GIS software to overcome issues related to sparse cells. For grid cells 

that have at least 12 vehicles with credible odometer readings (denoted as “good” cars), I assign 

the zonal average annual mileage of all “good” cars to the grid cell. For grid cells with 1-11 

“good” cars, I assign the inverse distance weighted average of 12 closest “good” annual mileages 
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to the grid cell. I compute VMT per household (VMT per capita) for each grid cell by 

multiplying the estimated VMT per vehicle within the grid cell by total number of vehicles 

within the grid cell then dividing by number of households (individuals). These odometer-

readings-based VMT estimates provide a more accurate and reliable picture of household vehicle 

usage than survey-based self-report VMT estimates, establishing a baseline for tracking future 

changes in vehicle usage and associated energy consumptions and emissions for Metro Boston. 

Figures 7 - 9 plot VMT per vehicle, VMT per household and VMT per capita across grid cells in 

Metro Boston respectively, using quantile classification method and 9 categories. The overall 

spatial pattern is what analysts would expect: VMT are lower in grid cells near urban centers, but 

higher in suburban areas. It is also interesting to note that there is: (a) a large area in suburbs 

without vehicles or households; (b) a significant variability within suburbs depending on whether 

the grid cell is near the town center; and (c) the difference in patterns between VMT per vehicle 

and VMT per household. 
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Source: The author 
Figure 7: VMT per Vehicle across Grid Cells in Metro Boston 
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Source: The author 
Figure 8: VMT per Household across Grid Cells in Metro Boston 
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Source: The author 
Figure 9: VMT per Capita across Grid Cells in Metro Boston 
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The dependent variables of the regression models are VMT per vehicle, VMT per 

household, and VMT per capita, computed for the 9-grid-cell catchment area of each grid cell, 

respectively. Figure 10 plots part of the study area. The vehicles are geocoded to a point layer 

based on the owners’ street addresses. “Good” vehicles refer to vehicles with at least two 

credible odometer readings; “bad” vehicles refer to vehicles with less than two credible odometer 

readings; and “none” means vehicles without odometer readings at all. Due to the nature of the 

geocoding function in GIS softwares, the points are not located at the centroids of corresponding 

homes, but line up along roads. Points that are close to the boundaries of grid cells are likely to 

be assigned to the wrong grid cells. The catchment area could help analysts smooth the surface 

and reduce the noise in the raw data. 

The total number of grid cells with at least one vehicle is 60,895. I exclude grid cells with 

annual VMT per household less than 100 miles or greater than 100,000 miles as well as grid cells 

without complete information. The final dataset for empirical analysis includes 52,929 grid cells. 
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Source: The author. 
Figure 10: Geocoded Vehicles and Grid Cells 
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3.3.3 Built-Environment Variables 

For this study, I computed 27 built-environment variables at fine-grained 250x250m grid cell 

level as described in Chapter 2.  

3.3.4 Demographic Variables 

Based on literature, I select 12 demographic variables at the block group level to control for the 

zonal difference of population, including percent of population below the poverty level, percent 

of owner-occupied housing units, percent of population with at least 13 years of schooling, 

median household income, percent of population that is white, per capita income, unemployment 

rate, percent of households with fewer than 3 members, percent of population three years old and 

over who are enrolled in elementary/high school, percent of population under 5, percent of 

population 65 years old and over, and percent of population 16 years old and over in labor force. 

Ideally, I should compute demographic variables at the grid cell level, but because of data 

limitations, I assign each grid cell the value of the block group to which it belongs.  For 

population and household counts, block group counts were distributed among only those grid 

cells in the residential area. 

3.4 EMPIRICAL ANALYSIS 

In Section 2.4, I present the results of the empirical analysis for the Boston Metropolitan Area. 

3.4.1 Factors Analysis 

To deal with the multicollinearity among variables, I use factor analysis to reduce a large number 

of built-environment and demographic variable to several built-environment and demographic 

factors respectively. The factors are included in the regression models as explanatory variables.  
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The factor analysis for built-environment variables is presented in Chapter 2. Similarly, I 

also apply factor analysis to the 12 demographic variables at the block group level and extract 

from them 3 demographic factors: wealth, children, and working status. Factor 1 can be seen as 

an indicator of wealthy level. Block groups with higher values in Factor 2 tend to have more 

children and bigger household size. Factor 3 is related to residents’ working status. The three 

factors explain 71.6% of the variance in the original variables. Factor loadings for each 

demographic variable are shown in Table 3. Table 4 presents the descriptive statistics of 

variables in the regression models. 

TABLE 3:  Factor Loadings of Demographic Factors 

   Factor 1 Factor 2 Factor 3
 

  
Wealth Children Working

Status
1 Percent of population below poverty level -0.863    
2 Percent of owner-occupied housing units 0.818 0.386  
3 Percent of population with at least 13 years of schooling 0.817    
4 Median household income 0.812    
5 Percent of population that is white 0.796    
6 Per capita income 0.707    
7 Unemployment rate -0.613    
8 Percent of households with less than 3 members   -0.909  
9 Percent of population that are enrolled in elementary/high school   0.869  
10 Percent of population under 5   0.728  
11 Percent of population 65 years old and over    -0.856
12 Percent of population 16 years old and over in labor force 0.427   0.793
* I suppress factor loadings with an absolute value less than 0.35 for interpretation convenience. 
Source: Calculated by the author using SPSS. 
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Table 4: Descriptive Statistics 

Variable  Obs. Mean Std. Dev. Min Max 
VMT per vehicle 52929 12056.9 1770.8 5219.7 23843.7 
VMT per household 52929 27120.6 13315.4 625.3 98954.6 
VMT per capita 52929 9372.2 4204.0 85.0 50158.2 
BE factor. 1: distance to non-work destinations 52929 -0.245 0.865 -2.594 3.983 
BE factor 2: connectivity 52929 0.425 1.172 -1.644 11.130 
BE factor 3: inaccessibility to transit and jobs 52929 -0.108 0.973 -2.271 4.583 
BE factor 4: auto dominance 52929 -0.082 0.610 -1.210 6.409 
BE factor 5: walkability 52929 0.080 0.921 -2.664 4.007 
DEM factor 1: wealth 52929 0.568 0.654 -4.153 2.588 
DEM factor 2: children 52929 0.413 0.764 -3.323 3.793 
DEM factor 3: working status 52929 0.097 0.862 -6.923 4.104 
Source: Calculated by the author. 
 

3.4.2 Regression Results 

Depending upon the selection of dependent variable and model specification, I estimate the 

following nine models: 

1. OLS model for VMT per vehicle; 

2. OLS model for VMT per household; 

3. OLS model for VMT per capita; 

4. Spatial lag model for VMT per vehicle; 

5. Spatial lag model for VMT per household; 

6. Spatial lag model for VMT per capita; 

7. Spatial error model for VMT per vehicle; 

8. Spatial error model for VMT per household; and  

9. Spatial error model for VMT per capita. 



  

 47

I estimate the spatial-lag and spatial-error models with GeoDa 0.9.5 software. Table 5 

summarizes statistics for the regression models. The R-squared of the OLS models range from 

34.2% to 52.7%. Test of residuals indicates that the error term of the OLS models exhibit 

significant spatial autocorrelation. The likely reasons are the omission of spatially-correlated 

explanatory variables, and the effects of travel behavior in surrounding areas. Moreover, both the 

simple Lagrange multiplier tests for omitted spatially-lagged dependent variables (LM-lag) and 

error dependence (LM-error) are statistically significant, indicating the existence of spatial 

autocorrelation. 

To capture the spatial effects, I estimate both spatial-lag and spatial-error models. Anselin 

et al.’s (1996) Lagrange multiplier tests of spatial-lag and spatial-error specifications being 

mutually contaminated by each other are employed to compare the two models. Both the test for 

error dependence in the possible presence of a missing lagged dependent variable (robust LM-

error), and the test for a missing lagged dependent variables in the possible presence of spatially-

correlated error term (robust LM-lag) are statistically significant. But the robust LM-error test 

rejects the null at the higher level of significance, favoring the spatial-error model. The log-

likelihood statistics also support this conclusion, indicating that the spatial-error model has a 

better fit to the data than the corresponding spatial-lag model and OLS model. The goodness-of-

fit statistics for VMT per vehicle models are higher than those for VMT per household and VMT 

per capita. 

Table 6 presents the estimation results of the three models using the spatial-error 

specification. 
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Table 5: Estimation Summary 

  VMT per Vehicle VMT per Household VMT per Capita 
  OLS Spatial Lag Spatial Error OLS Spatial Lag Spatial Error OLS Spatial Lag Spatial Error 
Observations 52929 52929 52929 52929 52929 52929 52929 52929 52929 
R-squared 0.527 0.789 0.810 0.418 0.626 0.631 0.342 0.566 0.573 
Log Likelihood -451127 -432073 -429930 -563448 -553582 -553497 -505660 -496458 -496291 
Test Statistic  p-value  Statistic p-value  Statistic p-value  
LM--Lag 86355.0 0.00  43966.2 0.00  41094.4 0.00  
LM--Error 115402.4 0.00  46425.7 0.00  43147.3 0.00  
Robust LM--Lag 621.6 0.00  619.4 0.00  305.3 0.00  
Robust LM--Error 29669.0 0.00  3078.8 0.00  2358.1 0.00  

Source: Calculated by the author. 
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Table 6: Estimation Results of the Spatial-Error Models 

VMT per Vehicle VMT per Household VMT per Capita 
  Coef. t-stat.   Coef. t-stat.   Coef. t-stat.   
Built-Environment Factors          
Distance to non-work destinations 444.7 21.2 ** 3820.9 23.1 ** 859.7 15.8 ** 
Connectivity -250.7 -23.4 ** -2970.3 -34.6 ** -833.6 -29.3 ** 
Inaccessibility to transit & jobs 1004.1 32.2 ** 5905.6 30.1 ** 1954.1 30.9 ** 
Auto dominance -9.7 -1.0  581.2 6.0 ** 271.5 8.3 ** 
Walkability 14.6 1.7  -1560.9 -19.4 ** -589.4 -21.8 ** 
Demographic Factors          
Wealth -26.9 -2.0 * 737.7 5.5 ** 296.9 6.6 ** 
Children -9.1 -1.0  545.5 5.9 ** -45.9 -1.5  
Working status 29.6 4.4 ** 160.3 2.3 * 58.1 2.5 * 
          
Lambda 0.91 397.1 ** 0.84 231.8 ** 0.83 218.9 ** 
Constant 12409.4 313.4 ** 30825.1 128.5 ** 10456.6 135.1 ** 
* and ** denote coefficient significant at the 0.05 and 0.01 level respectively. 
Source: Calculated by the author. 
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As shown in Table 6, most coefficients for demographic factors are statistically 

significant. One interesting finding is that higher wealthy level is associated with lower VMT per 

vehicle, but higher VMT per household and VMT per capita, which suggests that wealthier 

households tend to own more cars but drive each car less compared to other households. 

Household structure also influences vehicle usage. The number of children in the household 

tends to increase VMT per household, presumably because of child-related non-work trips. But 

its effects on VMT per vehicle and VMT per capita are insignificant. One possible explanation is 

that households tend to buy more vehicles as household size grows, but the usage of each vehicle 

does not change significantly. Factor 3 can be seen as a proxy for percentage of population that is 

working. This factor is positively associated with all three VMT variables, presumably due to the 

commuting trips.  

After controlling for the influence of demographic factors, I find that built-environment 

factors are indeed important predicators of vehicle usage at grid cell level, with smart-growth-

type neighborhoods associated with less vehicle usage than sprawl-type neighborhoods. The 

coefficients for the “distance to non-work destination” factor in the three models are positive and 

significant at the 0.01 level, suggesting that the spatial distribution of non-work activities is 

significantly associated with vehicle usage. As the distance to non-work destinations increase, 

VMT per vehicle, VMT per household, and VMT per capita all increase. The negative sign of 

the “connectivity” factor in all three models suggests that connectivity –an indicator of high-

density, grid-type neighborhood tends to reduce household vehicle usage. The coefficients of the 

“auto dominance” factor are positive and significant in the VMT per household and VMT per 

capita models, while its coefficient in the VMT per vehicle model is insignificant. This suggests 

that an auto-friendly environment influences VMT by increasing the number of cars owned by 
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households rather than by increasing the usage of each vehicle. As revealed by the estimated 

coefficients of the “walkability” factor, a good pedestrian environment is associated with lower 

VMT per household and VMT per capita, while its effect on VMT per vehicle is insignificant. 

The “walkability” factor tends to influence VMT by reducing the number of vehicles purchased. 

By comparing the coefficients of the demographic and built-environment factors, I find 

that built-environment factors have a higher prediction power on VMT than demographic 

factors. Table 7 and Figure 11 present the change in annual VMT per vehicle, per household, and 

per capita due to one standard deviation increase in the individual factor. As is shown in Figure 

11, accessibility to work and non-work destinations, connectivity, and transit accessibility make 

a much higher contribution to the model than other factors. The contributions are large for the 

VMT per household measure, where the average VMT per household at grid cell level for the 

study area is about 27,121 miles23. 

                                                 
2 For comparison purpose, I also calibrated the spatial error model with built-environment factors and 3 
demographic variables, median household income, percent of households with less than 3 members, and percent of 
population 16 years old and over and in labor force. Each demographic variable represents one demographic factor. 
The estimation results and the change in VMT measures due to one standard deviation increase in the independent 
variables are presented in Appendices 1.  The major conclusions of this essay still hold, except that the coefficient of 
the median household income variable has a positive and insignificant coefficient in the VMT per vehicle model. 
 
3 To account for the boundary effect in the “inaccessibility to transit and jobs“ factor, I rerun the spatial error model 
after excluding the 10 percent grid cells with the highest scores in the “inaccessibility to transit and jobs“ factor. The 
major conclusions still hold, which suggests that the impact of the boundary effect is not significant in this study. 
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Table 7: Change in VMT Measures Due to One Standard Deviation Increase in Factors 

  VMT per Vehicle VMT per Household VMT per Capita 
Built Environment Factors    
Distance to non-work destinations 384.8 3306.4 744.0 
Connectivity -293.8 -3480.5 -976.8 
Inaccessibility to transit and jobs 976.7 5744.7 1900.8 
Auto dominance -5.9 354.6 165.6 
Walkability 13.4 -1437.7 -542.9 
Demographic Factors    
Wealth -17.6 482.1 194.0 
Children -7.0 416.9 -35.1 
Working Status 25.6 138.3 50.1 

Source: Calculated by the author 
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Figure 11: Contributions of Factors to the Model 
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3.5 CONCLUSIONS 

In this study, I examine the relationship between the built environment and household vehicle 

miles traveled in the Boston Metropolitan Area. I derive the VMT measures using annual safety 

inspection records for all private passenger vehicles registered in Metro Boston. I compute a set 

of built-environment variables at 250x250m grid cell level using GIS techniques, apply factor 

analysis to mitigate multicollinearity, and integrate the built-environment and demographic 

factors into regression models to explain VMT variations. Spatial regression techniques are 

applied to correct spatial autocorrelation.  

This study provides some clues to the relationships between the built environment and 

vehicle usage within the Boston Metro area. The spatial-error model outperforms the 

corresponding spatial lag and OLS models in goodness-of-fit statistics. The regression results of 

the spatial error model reveal that both the built-environment and demographic factors are 

significantly associated with VMT. On the demographic side, I find that wealth is negatively 

associated with VMT per vehicle, but positively associated with VMT per household, suggesting 

that households in wealthier neighborhood tend to own more cars than other households, but use 

each car less. Due to data limitation, I computed the demographic variables at the block group 

level, which is more aggregate than built-environment variables. Thus the results may be 

influenced by the Modifiable Areal Unit Problem. In this study, I show that the built-

environment factors have higher impacts on VMT than demographic factors.  In particular, 

accessibility to work and non-work destinations, connectivity, and transit accessibility are 

negatively associated with VMT, and their impacts are noticeably greater than other factors. In 

most studies using travel survey data, the bias is in the other direction – the individual 

characteristics are known, but the built-environment factors come from data aggregated at census 
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tract or zip code zone scale. Many of these studies find that demographic or attitudinal factors 

explains most of the variations in VMT across households (e.g., Kitamura et al. 1997, Bagley 

and Moktarian 2002, and Frank et al. 2007), while the built-environment effect is minimal. The 

difference between my study and survey-based studies indicates the potential biases due to data 

aggregation, both on the demographic side and the built-environment side. The built-

environment effect may be biased downwards in previous studies using aggregate built-

environment measures, just like the demographic effect in this study. 

Although finding a strong association between the built environment and travel patterns 

is not the same as showing that a change in the built environment will lead to a change in travel 

behavior (Handy 1996), these results still provide some support for those smart-growth policies 

that advocate increasing accessibility to destinations, creating traditional-type high-density, 

mixed-use neighborhoods, and improving transit accessibility. The research findings can 

facilitate the dialogue among regional-planning agencies, local government and the public 

regarding growth management and sustainable regional development strategies and scenarios.  

This study also has implications for urban modeling by revealing the opportunities 

brought about by new spatial data infrastructure. With the development of information 

technology, the amount of administrative data with location information is rapidly increasing. 

For example, standardized GIS data layers are becoming more common for data about road 

networks, parcels, and building footprint, and for transaction information, such as housing 

transactions, vehicle safety inspections, transit fare cards, utility records, and cell phone use. 

These administrative datasets are collected regularly by various agencies. Calibrating urban 

models using administrative data can save the high expense of frequent surveys and enable 

improved monitoring and modeling of metropolitan areas at a spatially-detailed scale. 
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In the future, analysts can extend this study along multiple directions, for example 

1. examine temporal trends in land use-transportation interconnection using time series 

safety inspection data; 

2. construct profiles of fuel economy so that the built environment can be directly linked 

to energy consumptions and GHG emissions. 

3. employ structural equations models to investigate the causal relationships among key 

variables, such as the built environment, automobile ownership, and travel behavior; and  

4. extend the analysis to other North American metropolitan areas. 
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CHAPTER FOUR: RESIDENTIAL PROPERTY VALUES AND THE BUILT 

ENVIRONMENT: AN EMPIRICAL STUDY IN THE BOSTON METROPOLITAN 

AREA 

4.1 INTRODUCTION 

Over the last decade, planners have shown renewed interest in utilizing land-use-control policies 

to mitigate negative effects of sprawl-type development. Under the general name “smart 

growth”, a group of planning strategies such as urban growth boundary, mixed-use planning, and 

transit-oriented development, is gaining popularity. Researchers have argued that built-

environment features advocated by such strategies can curb travel demand, ease congestion, 

reduce emission, and contribute to improved quality of life (Tu and Eppli 1999). 

From a policy perspective, it is important to understand how the built environment is 

valued in the market place. This information can help estimate the property-value effects of land- 

use change, and quantify the impacts of smart-growth policies on a neighborhood. Furthermore, 

it provides a potential financing mechanism via land value capture to fund infrastructure 

investment and help relieve the financial burdens of governments and agencies around the world.  

Despite the policy motivations, a close look at the literature reveals that there have been 

few detailed and comprehensive analyses of the relationship between the built environment and 

residential property values. A number of analysts have empirically investigated the effects on 

housing price of certain built-environment features (e.g., Cao and Cory 1981; Song and Knaap 

2004; Bowes and Ihlanfeldt 2001; Mattews and Turnbull 2007). However, they have been unable 

to draw a complete picture of the built environment, which is multi-dimensional in nature, due to 

data limitations and methodological challenges, such as measurement of the built environment, 

multicollinearity, and spatial autocorrelation. 
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Recent developments in information infrastructure and econometrics have led to a 

significant increase in the amount of available data with spatial attributes, spatial analysis tools, 

and modeling techniques dealing with spatial phenomena, which allow investigators to account 

for built-environment characteristics in their models (Case et al. 2004). Taking advantage of 

these new advances, I develop a comprehensive and spatially detailed analysis of the relationship 

between the built environment and residential property values. 

The next section introduces related literature. Section 4.3 describes data and study area. 

Section 4.4 outlines the methodological framework of empirical analyses. Section 4.5 presents 

and discusses the modeling results. Section 4.6 concludes this second study of built-environment 

effects on travel demand, housing prices, and housing location. 

4.2 LITERATURE REVIEW 

This section summarizes the related literature, including the behavior framework of household 

location choice and hedonic value analysis of the built environment. 

4.2.1 Behavioral Framework 

Two strands of literature are closely related to household location choice. One line of research is 

the monocentric city model in urban economics. The concept of the monocentric city has its 

historical origin in the work of von Thunen (1966), and is further developed by Alonso (1964), 

Muth (1969), and Mills (1972). The Alonso-Muth-Mills model describes the equilibrium 

residential pattern in a monocentric city, whereby people commute to the central business 

district, where all jobs are located, with transportation cost depending on commuting distance. 

Each household maximizes utility by allocating household income to the consumption of a 

composite good, land (housing), and commuting. This model remains a powerful workhorse for 
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the analysis of land values and location choices. However, analysts would like to consider more 

complex representations of dispersed destinations and the multi-modal transportation system in 

order to characterize modern polycentric metropolitan areas. 

Another line of literature deals with the relationship between the built environment and 

travel behavior, which is widely researched in the transportation field. The built environment 

comprises land use, urban design, and transportation systems (Handy et al. 2002). Crane (1996) 

argues that the built environment can influence travel cost through speed and distance.  He 

proposes individual choice of trip frequency and mode split as a constrained utility-maximization 

problem, with the built environment influencing travel behavior through the travel time of 

individual mode. Boarnet and Crane (2001) consider travel cost to be a generalized cost 

including time, out-of-pocket monetary expenditures, and psychological effects, and specify 

three alternative ways the built environment could affect travel cost. Fan and Khattak (2009) 

suggest two specific mechanisms through which the built environment may influence travel 

decisions: the built environment affects distance of trips, and the built environment affects time 

cost of driving. Cao et al. (2009) indicate that the extent to which travel costs are affected by the 

built environment is debatable. Built-environment characteristics may be good predictors for 

non-motorized travel costs, moderate predictors for auto travel costs, but inferior predictors for 

transit travel costs. 

In summary, the built environment can influence travel costs either directly or indirectly, 

and thereby might influence household location choice and housing price.  

4.2.2 Hedonic Price Analysis of the Built Environment 

Hedonic-price models assume that goods are characterized as a bundle of inherent attributes, and 

the observed prices of goods reflect the implicit prices of these attributes (Rosen 1974). 
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Researchers have long sought to explain the variation in property values with hedonic-price 

models and location characteristics, such as public-service level, tax rate, and school quality 

(Edel and Sclar 1974; King 1974; Downes and Zabel 2002).  

Analysts also apply hedonic-price models to investigate the built-environment effects on 

housing price. Existing studies indicate that certain built-environment features can be capitalized 

into property values, such as land-use mix (Cao and Cory 1981; Song and Knaap 2004), transit 

accessibility (Rowes and Ihlandeldt 2001; Rodriguez and Mojica 2009), and street network 

pattern (Matthews and Turnbull 2007). Cao and Cory (1981) show that increasing industrial, 

commercial, multi-family and public land uses tends to increase surrounding home values. Song 

and Knaap (2004) demonstrate that housing prices increase with proximity to public parks or 

commercial centers. Bowes and Ihlanfeldt (2001) look into both direct and indirect effects of 

transit stations, and they find that stations located away from downtown have positive impacts on 

property values, while stations in low-income neighborhoods or close to downtown generate 

negative externalities to nearby properties. Rodriguez and Mojica (2009) employ a before-and-

after hedonic-price model to determine the effects of the Bus Rapid Transit (BRT) network 

expansion in Bogota. Compared with the control area, they identify asking price increases of 13-

14% for the period after the BRT was extended. Matthews and Turnbull (2007) use measures of 

street connectivity and their interactions with other neighborhood attributes to evaluate how 

street layout affects property values, and they find a significant impact. Unlike the above studies 

that focus on one specific dimension of the built environment, Song and Knaap (2003) develop a 

comprehensive study on urban-form measures. They find that households pay a premium for 

some new-urbanism features, such as more connective street networks, shorter cul-de-sacs, 

smaller block size, better pedestrian accessibility to commercial uses, more evenly-distributed 
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mixed land uses, and better proximity to light rail stations. Features such as higher density and 

containing more commercial, multifamily and public uses are not attractive to most buyers. 

Compared with the large amount of literature on residential property values, studies 

focusing on the built environment are relatively few. Researchers face a number of dilemmas in 

probing the links between the built environment and residential property values. One significant 

barrier is the absence of spatially-detailed built-environment data. Data limitations have forced 

researchers to use built-environment measures that are more aggregate than is suggested by 

relevant theories (Song and Knaap 2003), or focus on narrow aspects of the built environment, 

taking a piecemeal approach to built-environment attributes (Matthews and Turnbull 2007). 

Moreover, some methodological challenges also contribute to the lack of substantive empirical 

results. To compute built-environment variables, such as density, land-use mix, street network 

layout, and pedestrian environment, many analysts have relied on a definition of neighborhood 

that is either dependent on census geography or on the delineation of a neighborhood.  Thus, they 

are influenced by the Modifiable Areal Unit Problem (MAUP), one well-known problem in the 

analysis of spatial phenomenon. The MAUP often leads to the inconsistency of measurement 

results and statistical analyses. Due to the collinearity between built-environment attributes like 

density, mixed use, and walkability, it is questionable whether many built-environment variables 

will show up as statistically significant in the model (Cervero and Kockelman 1997). The spatial 

autocorrelation problem associated with the use of spatial data could lead to biased and 

inconsistent or inefficient estimation results in OLS models, depending upon the form of spatial 

autocorrelation (Anselin 1993). I aim to address some of these issues and develop a more 

comprehensive study of the built environment and residential property values. 
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4.3 DATA AND METHODOLOGY  

In this section, I describe the methodology and datasets used in this study. 

4.3.1 Built-Environment Measurement and Factor Analysis 

Based on the behavioral framework discussed in Section 4.1 and related literature, I compute 27 

built-environment variables that have the potential to influence travel costs. To deal with the 

potential multicollineairty among built-environment variables, I apply factor analysis to reduce a 

large set of built-environment variables to several factors and include the factors in regression 

models. 

4.3.2        Hedonic-price models and Spatial Econometrics 

A widely-used semi-log form hedonic-price model for housing properties is:  

itittijtjit DXyLn εβα ++= ∑∑)(                                                                                   (1) 

For time period t, yit is the transaction price of property i, Xijt is a set of j housing attributes, Dit is 

a set of dummy variables which equal one for transactions taking place in time period t, and zero 

otherwise, and ε is a random error. Estimates of α can be used to compute the implicit marginal 

price for housing attributes. Estimates of β measure price movements associated with each time 

period, relative to a base period. Although there is no strong theoretical basis for choosing the 

functional form of a hedonic regression, Malpezzi (2002) argues that the semi-log specification 

has several advantages.  

Literature has shown that if spatial autocorrelation is presented in an OLS model, the 

estimation results will be either biased and inconsistent or inefficient depending on the 

characteristics of the spatial autocorrelation (Anselin 1993). One reason for this phenomenon 

might be that houses in the same neighborhood share certain location characteristics. Following 
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Anselin (1993), we account for two types of spatial autocorrelation with two types of spatial 

econometric models. The spatial-lag model, which is analogous to the time-series lagged 

dependent variable model, is used to deal with autocorrelation related to a lagged term on the 

dependent variable. In this case, OLS will be biased and inconsistent. The second type of 

autocorrelation is analogous to time-series serially-correlated errors, which leads to unbiased and 

consistent, but inefficient, OLS estimation. Analysts use a spatial-error model to account for this 

type of spatial autocorrelation.  

The spatial-lag model can be specified as: 

itittijtjyLnit DXWyLn
it

εβαρ +++= ∑∑)()(                                                                  (2) 

where ρ is the autoregressive coefficient, Wln(yit) is the NxN spatial weight matrix, ε ~ N(0, σ2I). 

The spatial-error model can be specified as: 

itit

itittijtjit

it
W

DXyLn

μλε

εβα

ε +=

++= ∑∑)(
                                                                                  (3) 

where λ is the spatial autoregressive coefficient, Wεit is the NxN spatial weight matrix, μ is a 

vector of i.i.d. standard normal error terms. 

4.4 STUDY AREA AND DATA 

I select the Boston Metropolitan Area as the study area. Boston exhibits a variety of built-

environment characteristics, which makes it a compelling case for my study. 

In this study, I use two recent datasets with exceptional spatial detail to measure housing 

price and the built environment. The primary housing dataset includes information on all single-

family4 housing transactions in the Boston Metropolitan Area from 2004 to 2006 provided by the 

                                                 
4 In this study, single-family properties are defined as properties with state use code “101”. 
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Warren Group. This dataset contains date of sale, transaction price, location, and detailed 

structural characteristics of properties. I select 11 structural variables for the  analysis: (1)  lot 

size, (2) living area, (3) number of parking spaces, (4) number of fireplaces, (5) total rooms, (6) 

number of bedrooms, (7) number of full baths, (8) number of half baths, (9) a dummy variable 

indicating below average condition, (10) a dummy variable indicating good or above condition, 

and (11) a dummy variable showing the existence of air conditioning. After excluding 

transactions with unreliable data, I include 92,774 single-family housing transactions in the 

analysis. Transactions in the town of Tewksbury are missing. I plot the spatial distribution of 

housing transactions in Figure 12. 
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Source: The author 
FIGURE 12: Single-family housing transactions in the Boston Metropolitan Area, 2004-2006.
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Another dataset is the built-environment data from MassGIS, the State’s Office of 

Geographic and Environmental Information, with unprecedented spatial detail. Detailed data 

description is provided in Chapter 2. 

4.4.1 Dependent Variable 

The dependent variable in the hedonic-price model is the natural logarithm of the nominal 

transaction price deflated to the first quarter of 2004. 

4.4.2 Built-Environment Variables 

I computed 27 built-environment variables in this study as described in Chapter 2. 

4.4.3 Control Variables 

To control for the influence of non-built-environment attributes, I include four additional sets of 

variables in the regression models: (1) structural characteristics (11 structural variables from the 

Warren Group data), (2) public service level (property crime rate, residential property tax rate, 

and school scores), (3) neighborhood socioeconomic characteristics (percent of white population 

and median household income of the block group), and (4) view amenity (distance to park). 

Table 8 presents the descriptive statistics of variables in the model. 
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TABLE 8: Descriptive Statistics of Variables 

Variable Minimum Maximum Mean Std. Dev. 
Ln(transaction price) 11.00 15.00 12.91 0.45 
Control Variables     
Lot size (k ft2) 0.400 2918.520 26.825 50.836 
Number of parking space 0 8 0.357 0.712 
Number of fireplaces 0 9 0.667 0.807 
Living area (k ft2) 0.32 15.43 1.957 0.947 
Total number of rooms 1 23 7.001 1.685 
Number of bedrooms 1 15 3.298 0.853 
Number of full bathrooms 1 10 1.673 0.768 
Number of half bathrooms 0 5 0.607 0.540 
Dummy - below average building condition 0 1 0.024 0.152 
Dummy - good or above building condition 0 1 0.351 0.477 
Dummy - presence of air conditioning 0 1 0.382 0.486 
Median household income (k$) 9.327 200.001 70.462 25.983 
Percent of white population 0.000 1.000 0.905 0.131 
Residential property tax per (k$) 7.270 15.110 10.276 1.511 
Property crime rate (crime/population*1000) 0.000 48.079 18.637 11.873 
School scores 49.000 194.000 148.122 27.490 
Distance to park (km) 0.000 6.950 0.546 0.559 
Built-Environment Variables     
Distance to church (km) 1.000 10.000 2.938 1.986 
Distance to dentist (km) 1.000 15.000 3.538 2.531 
Distance to grocery store (km) 0.000 8.381 1.408 1.155 
Distance to gym (km) 1.000 15.000 3.882 2.172 
Distance to hardware store (km) 0.000 7.537 1.567 1.079 
Distance to shopping mall (km) 0.000 9.604 1.803 1.386 
Distance to restaurant (km) 1.000 10.000 2.827 1.997 
Distance to school (km) 0.000 6.800 1.057 0.881 
Percent of roads with access control 0.000 0.977 0.026 0.088 
Percent of roads with 30+ speed limit 0.000 1.000 0.037 0.095 
Average road width (ft) 0.000 342.008 39.178 15.946 
Distance to highway exit (km) 0.022 17.570 3.638 2.539 
Distance to subway station (km) 0.006 58.829 19.748 13.977 
Distance to commuter rail station (km) 0.021 24.639 4.444 3.779 
Distance to bus stop (km) 0.002 51.914 11.297 11.498 
Distance to MBTA parking lot (km) 0.005 24.453 4.680 3.975 
Average sidewalk width (ft) 0.000 20.943 3.561 3.394 
Percent of roads with curbs 0.000 1.000 0.366 0.294 
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Percent of roads with sidewalks 0.000 1.000 0.423 0.315 
Population density (10k/km2) 0.000 2.041 0.161 0.190 
Land-use mix 0.000 0.994 0.247 0.229 
Road density (km/km2) 0.000 56.302 9.533 5.400 
Intersection density (10/km2) 0.000 28.444 5.466 3.937 
Density of 3-way intersections (10/km2) 0.000 18.489 3.580 2.581 
Density of 4-way intersections (10/km2) 0.000 9.067 0.823 1.042 
Percent of 4-way intersections  0.000 1.000 0.114 0.104 
Job accessibility (k) 5.869 690.722 174.308 136.451 

Source: Calculated by the author. 
 

4.5 EMPIRICAL RESULTS 

4.5.1        Built-Environment Factors 

To deal with the potential multicollinearity, I perform a principle component analysis with 

varimax rotation on the built-environment variables as detailed in Chapter 2. Table 9 reports the 

descriptive statistics of built-environment factors in the model. 

Table 9: Descriptive Statistics of Built-Environment Factors 

Built-Environment Factors Minimum Maximum Mean Std. Dev. 
Distance to non-work destinations -2.594 3.639 -0.367 0.767 
Connectivity -1.672 8.940 0.874 1.364 
Inaccessibility to transit and jobs -2.259 4.583 -0.166 1.014 
Auto dominance -1.245 7.508 -0.073 0.569 
Walkability -2.664 4.007 0.295 0.971 

Source: Calculated by the author. 
 

4.5.2        Regression Models 

I estimate six models in this study, depending on the selection of model specification and the 

choice of factors: 

Model 1: OLS model with built-environment variables 
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Model 2: OLS model with built-environment factors 

Model 3: Spatial-lag model with built-environment variables 

Model 4: Spatial-lag model with built-environment factors 

Model 5: Spatial-error model with built-environment variables 

Model 6: Spatial-error model with built-environment factors 

Models 1 and 2 use OLS estimation, assuming absence of spatial autocorrelation. The 

value of Moran’s I test for model 2 is 192.26, significant at the 0.01 level, suggesting a clear 

cluster pattern of residuals. The spatial-weight matrix for both spatial-lag and spatial-error 

models is developed assuming constant spatial dependence among properties up to a maximum 

distance. The maximum Euclidean distance used is 400m. Table 10 shows the summary statistics 

of the six models. Estimation results of the six models are given in Tables 11 and 12.  

Table 10: Estimation Summary 

  

Model (1) 
OLS + BE 
Variables 

Model (2) 
OLS + BE 

Factors 

Model (3) 
Spatial Lag 

+ BE 
Variables 

Model (4) 
Spatial Lag 

+ BE 
Factors 

Model (5) 
Spatial Error 

+ BE 
Variables 

Model (6) 
Spatial Error 

+ BE 
Factors 

Observations 92774 92774 92774 92774 92774 92774 
R-squared 0.750 0.733 0.751 0.735 0.794 0.797 
Log Likelihood 5971.72 3008.82 6149.59 3238.25 13665.05 12797.12 
AIC -11831.4 -5949.64 -12185.20 -6406.50 -27218.10 -25526.20 
SC -11302.9 -5628.75 -11647.20 -6076.17 -26689.57 -25205.35 

Source: Estimated by the author using GeoDa 0.9.5. 
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TABLE 11: Estimation Results of Models 1, 3, and 5 

Model (1) 
OLS + 

BE Variables 

Model (3) 
Spatial Lag + 
BE Variables 

Model (5) 
Spatial Error + 
BE Variables 

Variables Coeff. t-stat.  Coeff. t-stat.  Coeff. t-stat.  
Constant 11.476 787.71** 11.358 710.55** 11.576 502.10** 
Control Variables    
Lot size (10k sq. ft) 0.003 19.55** 0.003 21.11** 0.004 26.25** 
Number of parking space 0.022 18.96** 0.021 18.68** 0.020 17.39** 
Number of fireplaces 0.039 34.95** 0.039 34.76** 0.033 29.23** 
Living area (k sq. ft2) 0.160 110.42** 0.160 110.16** 0.150 107.02** 
Total number of rooms 0.018 22.07** 0.018 22.16** 0.014 18.95** 
Number of bedrooms 0.009 6.76** 0.009 6.70** 0.014 11.61** 
Number of full bathrooms 0.085 57.80** 0.084 57.61** 0.065 47.69** 
Number of half bathrooms 0.073 45.55** 0.072 45.32** 0.062 42.14** 
Below average building condition -0.092 -18.45** -0.092 -18.49** -0.114 -24.29** 
Good and above building condition 0.059 34.40** 0.058 34.12** 0.071 40.44** 
Presence of A/C 0.009 6.05** 0.009 5.70** 0.010 6.60** 
Median household income (k$) 0.003 59.38** 0.003 58.14** 0.002 34.73** 
Percentage of white population 0.170 22.74** 0.167 22.33** 0.120 10.72** 
Residential property tax rate -0.016 -28.16** -0.016 -27.90** -0.017 -16.99** 
Property crime rate -0.001 -5.68** -0.001 -5.96** -0.001 -3.94** 
School scores 0.003 52.44** 0.003 51.78** 0.003 36.93** 
Distance to park (km) -0.008 -4.90** -0.008 -4.98** -0.007 -2.76** 
Built Environment Variables    
Distance to church (km) 0.001 1.08 0.001 1.05 0.001 1.09 
Distance to dentist (km) -0.004 -7.59** -0.004 -7.35** -0.004 -5.30** 
Distance to grocery store (km) -0.002 -1.99* -0.002 -1.63 0.001 0.59 
Distance to gym (km) -0.002 -4.50** -0.002 -4.45** -0.002 -3.26** 
Distance to hardware store (km) 0.009 9.02** 0.008 8.96** 0.009 5.84** 
Distance to shopping mall (km) 0.004 5.48** 0.004 5.81** 0.006 4.75** 
Distance to restaurant (km) 0.000 -0.12 0.000 -0.11 0.001 0.87 
Distance to school (km) 0.009 7.48** 0.009 7.71** 0.006 2.94** 
Percent of roads with access control 0.074 5.49** 0.076 5.75** 0.073 3.96** 
Percent of roads with 30mph+ speed limit 0.014 1.30 0.013 1.23 -0.007 -0.46 
Average road width (ft) -0.001 -11.19** -0.001 -11.13** -0.001 -7.45** 
Distance to highway exit (km) -0.001 -2.84** -0.001 -2.46* -0.001 -1.66 
Distance to subway station (km) 0.001 3.48** 0.001 3.51** 0.000 0.95 
Distance to commuter rail station (km) -0.015 -26.51** -0.015 -26.34** -0.016 -16.30** 
Distance to bus stop (km) 0.000 -0.33 0.000 -0.53 0.000 0.59 
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Distance to MBTA parking lot (km) 0.013 24.17** 0.012 23.87** 0.013 14.63** 
Average sidewalk width (ft) -0.003 -3.18** -0.002 -2.65** -0.002 -1.71 
Percent of roads with curbs -0.044 -10.22** -0.045 -10.45** -0.032 -4.78** 
Percent of roads with sidewalks 0.064 9.02** 0.059 8.35** 0.052 4.93** 
Population density (10k/sq. km2) -0.002 -0.17 -0.002 -0.23 -0.029 -2.12* 
Land-use mix -0.018 -4.50** -0.016 -4.06** -0.035 -6.59** 
Road density (km/sq. km2) -0.003 -9.05** -0.003 -9.26** -0.003 -7.93** 
Intersection density (10/sq. km2) -0.003 -2.60** -0.003 -2.82** -0.005 -2.78** 
Density of 3-way intersections (10/sq.km2) 0.003 2.22* 0.003 2.35* 0.004 1.81 
Density of 4-way intersections (10/sq.km2) 0.007 2.92** 0.007 3.21** 0.007 2.42** 
Percent of 4-way intersections -0.055 -4.14** -0.056 -4.25** -0.051 -2.99** 
Job accessibility (k) 0.009 66.48** 0.009 65.82** 0.010 42.90** 
* and **  denote coefficient significant at the 0.05 level and 0.01 level respectively
Source: Estimated by the author using Geoda 0.9.5. 
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TABLE 12  Estimation Results of Models 2, 4, and 6 

  

Model (2) 
OLS + 

BE Factors 

Model (4) 
Spatial Lag + 
BE Factors 

Model (6) 
Spatial Error + 

BE Factors 
Variables Coeff. t-stat.  Coeff. t-stat.  Coeff. t-stat.  
Constant 11.493 897.01** 11.356 784.66** 11.692 475.35** 
Control Variables    
Lot size (10k sq. ft2) 0.003 18.79** 0.003 20.71** 0.004 27.48** 
Number of parking space 0.032 27.90** 0.032 27.47** 0.022 18.98** 
Number of fireplaces 0.043 38.64** 0.043 38.25** 0.033 29.11** 
Living area (k sq. ft2) 0.159 106.43** 0.158 106.25** 0.147 104.88** 
Total number of rooms 0.020 24.12** 0.020 24.21** 0.014 18.73** 
Number of bedrooms 0.008 5.80** 0.008 5.74** 0.015 12.44** 
Number of full bathrooms 0.093 61.47** 0.092 61.21** 0.062 46.26** 
Number of half bathrooms 0.079 48.32** 0.079 48.01** 0.061 41.91** 
Below average building condition -0.084 -16.42** -0.084 -16.47** -0.116 -24.90** 
Good and above building condition 0.048 27.48** 0.047 27.26** 0.072 40.06** 
Presence of A/C 0.008 4.77** 0.007 4.38** 0.009 6.25** 
Median household income (k$) 0.003 66.01** 0.003 64.33** 0.002 28.18** 
Percentage of white population 0.170 23.15** 0.166 22.61** 0.081 6.28** 
Residential property tax rate -0.021 -36.67** -0.020 -36.13** -0.020 -15.99** 
Property crime rate -0.001 -6.54** -0.001 -6.83** -0.001 -3.48** 
School scores 0.003 57.91** 0.003 56.95** 0.003 32.72** 
Distance to park (km) -0.009 -5.66** -0.009 -5.67** -0.011 -3.50** 
Built Environment Factors    
Distance to non-work destinations -0.008 -6.96** -0.007 -5.65** 0.001 0.54 
Connectivity 0.036 47.85** 0.035 46.64** 0.016 12.21** 
Inaccesibility to transit and jobs -0.070 -77.10** -0.069 -76.00** -0.084 -42.92** 
Auto dominance -0.005 -3.72** -0.005 -3.43** -0.012 -5.47** 
Walkability 0.015 17.52** 0.014 16.49** 0.014 9.15** 
    
LAMBDA   0.637 177.43** 
RHO   0.013 21.34**  
* and ** denote coefficient significant at 0.05 and 0.01 level respectively. 
Source: Estimated by the author using GeoDa 0.9.5. 
 

In terms of goodness-of-fit statistics, such as log likelihood, AIC, and SC, the spatial- 

error models outperforms spatial-lag models and OLS models. The existence of the spatial-error-

type autocorrelation suggests that some variables not included in the OLS model are spatially-
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correlated. The impacts of these missing variables are captured by the spatially-lagged error term 

in the spatial error model. Models with built-environment variables generally have better fit 

statistics than corresponding models with built-environment factors, but the results are harder to 

interpret. I use the three pedestrian-environment related variables in Model 1 as an example. The 

variable “percent of roads with sidewalks” has a positive and significant coefficient, while 

“percent of roads with curbs” and “average sidewalk width” both have negative and significant 

coefficients. A model with such contradictory results cannot be used to inform policy making 

very well. A review of the correlation matrix shows that the three variables are highly correlated, 

which may contribute to the counter-intuitive results. Model 2 uses built-environment factors 

instead. The “walkability” factor captures the underling force of these individual road 

characteristics and gets a positive and significant coefficient, which is a more understandable and 

useful result. 

In general, inclusion of built-environment variables/factors does not change signs of 

structural variables, but indeed affect magnitude of the coefficients. The structural variables have 

expected signs, and are statistically significant at the 0.01 level. The quarterly housing price 

index computed using the results of Model 6 has the same evolution pattern as the index by the 

Office of Federal Housing Enterprise Oversight. It increased gradually from Q1 2004, peaked at 

Q3 2005, and then began its decline to Q4 2006. This consistency shows that the model at least 

captures the fluctuation in the general housing market without significant mistakes. As for other 

control variables, high median household income, high percentage of white population, low 

residential tax rate, low crime rate, and good school scores tend to increase property values.  

 Built-environment factors appear to capture most of the explanatory power of built-

environment variables, and are much easier to interpret. After controlling for these variables, we 
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find that built-environment factors are indeed associated with property values. Next, we discuss 

the effects of built-environment factors based on results of Models 2, 4, and 6 (the OLS, spatial- 

lag, and spatial-error models with built-environment factors). 

Distance to Non-Work Destinations 

Both the OLS (Model 2) and spatial-lag (Model 4) models suggest households would like 

to pay a premium for proximity to non-work destinations. In both cases, the t values have 

significance at the 0.01 level. However, accounting for the spatial-error term (Model 6) renders 

the factor insignificant. It suggests that the error term may contain some unobserved variables 

that are correlated with this factor and relevant to housing price at a different level of spatial 

aggregation. 

Connectivity 

The positive sign of the connectivity factor in all three models suggests that other things 

being equal, households value good connectivity – an indicator of a higher-density, locally 

accessible, grid-type neighborhood. The magnitude of this effect based on the spatial-error model 

is about half that of the OLS and spatial-lag models. If the “connectivity” score increases by 

1.364 units, which is one standard deviation of this factor, the property value will increase 2.2% 

(Model 6), or 8.39 thousand dollars for a house priced at 376.5 thousand dollars (the median 

value of all single-family housing transactions). 

Inaccessibility to Transit and Jobs 

The negative sign of the coefficients for the “inaccessibility to transit and jobs” factor 

indicates households demand a discount for inaccessibility to transit and jobs. A one standard 
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deviation (1.014 units) decrease of this factor can increase the property value by 8.1%, or 30.65 

thousand dollars for a house priced at 376.5 thousand dollars (Model 6). 

Auto Dominance 

The “auto dominance” factor has a negative coefficient, which means households prefer 

locations further away from high-speed roads. This result is somewhat contrary to our 

expectation based on its impact on travel costs. I speculate that the relationship between the auto 

dominance factor and housing price can be attributed to: (a) a positive impact of increasing auto 

speed and reducing travel costs; and (b) a negative impact of high-speed roads, due to noise, 

emissions, and safety. In this study, the negative effect outweighs the positive effect. The net 

effect is that property values are estimated to decrease 0.7% (about 2.56 thousand dollars for a 

house priced at 376.5 thousand dollars) for one standard deviation (0.569 units) increase in the 

“auto dominance” factor (Model 6).  

Walkability 

The three models have stable estimates on the “walkability” effect. Based on the 

coefficient of the spatial error model, the positive sign indicates that households pay a premium 

to live in neighborhoods with a good pedestrian environment, controlling for other variables. If 

the “walkability” score increases by one standard deviation (0.971 units), the property value will 

increase around 1.4%, or 5.34 thousand dollars for a house priced at 376.5 thousand dollars. 

4.5.3        Built-Environment Effects in Sub-Markets 

Analysts suggest that the built-environment effect may depend on the historical development of 

neighborhoods (Matthews and Turnbull 2007). Because transit-oriented development is an 

important smart-growth strategy, I investigate whether the built-environment effect varies 
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between transit-oriented neighborhoods and other neighborhoods. To do so, I divide the data into 

two sub-samples, one for houses with good transit accessibility, defined as locating within 800m 

(walking distance) to a subway station or bus stop, and one for houses locating beyond walking 

distance to a subway station or bus stop. I estimate the spatial-error model for the two sub-

samples separately. The estimation results are presented in Table 13. To simplify the 

presentation, only coefficients of the built-environment factors are shown. 

TABLE 13: Estimation Results of Sub-Models 

  Observations within 800m of 
subway station / bus stop 

Observations beyond 800m of 
subway station / bus stop 

 Variables Coeff. t-stat. Coeff. t-stat. 
Distance to non-work destinations -0.007 -0.73 0.000 0.15 
Connectivity 0.017 4.53** -0.008 -4.07** 
Inaccessibility to transit and jobs -0.155 -10.84** -0.057 -28.48** 
Auto dominance -0.001 -0.09 -0.015 -6.70** 
Walkability 0.013 3.38** 0.002 0.88 
LAMBDA 0.824 152.36** 0.517 106.86** 
   
No. of observations 28023  64751  
Pseudo R-squared 0.833    0.785    
* and ** denote coefficient significant at the 0.05 level and 0.01 level respectively. 
Source: Estimated by the author using GeoDa 0.9.5. 
 

The coefficient of the spatially-lagged error term is highly significant in both sub-models, 

which rejects the OLS model and confirms the existence of spatial-error-type autocorrelation. As 

shown in the table, signs remain the same for all significant built-environment factors except for 

connectivity, although magnitudes of coefficients vary between the sub-models.  

For the “distance to non-work destinations” factor, all coefficients are once again 

insignificant, although the sub-sample of houses with good transit-accessibility has a coefficient 
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of -0.007, suggesting households may demand a premium for proximity to non-work 

destinations.  

In terms of the “connectivity” factor, households choosing to live close to transit stations 

pay a premium for traditional grid-type, high-density neighborhoods, as reflected by the positive 

coefficient of the connectivity factor. This premium is 2.4% of the housing value for one 

standard deviation of increase (1.364 units) in the factor score, or 8.93 thousand dollars for a 

house priced at 376.5 thousand dollars. However, households living beyond walking distance to 

transit stations value cul-de-sac-type street network more, and they want a 1.0% discount for one 

standard deviation increase in the connectivity score. Both effects are statistically significant.  

The coefficients for the “inaccessibility to transit and jobs” factor are negative in both 

sub-models. Households choosing neighborhoods with good transit-accessibility pay a premium 

of 14.5% of the housing value for one standard deviation (1.014 units) of decrease in the factor 

score, while households in the other sub-sample would pay only 5.6% of the housing value.  

There is no significant effect for the “auto dominance” factor in the good-transit-

accessibility sub-model. However households in the other sub-model demand a 0.8% discount 

for one standard deviation (0.569 units) increase in the factor. Hence, the “auto dominance” 

factor shows little difference in the city, but it matters in suburban areas. 

Households in good-transit-accessibility neighborhoods care more about the pedestrian 

environment than households in other neighborhoods. They pay a premium of 1.2% of housing 

value for one standard deviation (0.971 units) increase in the factor, while in the other sub-

model, this effect is insignificant. The little difference of pedestrian environment in the suburban 

area may contribute to this insignificance. 
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The different premiums for the built environment between the two submarkets may be 

partly attributed to life style preference. Transit-oriented households may purposely choose to 

live in transit-friendly neighborhood, thus pay higher premium for built-environment features 

that favor transit. The coexistence of spatial-error-type autocorrelation and submarkets may 

suggest that some omitted variables, such as life style preference, are correlated at different 

spatial scales. These omitted variables may help explain the formation of submarkets. 

4.6 CONCLUSIONS 

In this paper, I examine the relationship between the built environment and residential property 

values. Taking advantage of two recent datasets with exceptional spatial detail, I compute a set 

of built-environment variables at 250x250m grid cell level, apply factor analysis to mitigate 

multicollinearity, and integrate the built-environment variables/factors into hedonic-price 

models. I apply spatial-regression techniques to correct spatial autocorrelation. Also, I divide the 

data into two sub-samples to investigate the built-environment effects in submarkets. By using a 

cross-sectional analysis, I cannot identify causal relationships between the built environment and 

property values, and the potential endogeneity could bias the estimates of the models. Solving 

these issues necessitates either before-and-after datasets, used by Rodriguez and Mojica (2009) 

or more complex econometric models, such as the instrumental-variable approach employed by 

Song and Knaap (2004). However, potential instruments, such as land-use regulations, applied at 

the municipal level will not enable differentiation at the 250x250m grid cell detail used in this 

study.  Although I lack instrumental variables at the fine-grained spatial detail, my analysis  

reveals significant association between the built environment and property values at a very 

disaggregate scale – associations that will have to be explained if and when appropriate data 

become available from a before-and-after study. 
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Using goodness-of-fit statistics to rank the models, I find that the spatial-error model is 

the best model, followed by the spatial-lag model and the OLS model. Compared with the results 

of the OLS model, using spatial econometrics models changes the magnitude of the estimated 

coefficients of built-environment factors, but the direction of most built-environment factors 

does not change. Although models with built-environment variables have better fit statistics than 

corresponding models using built-environment factors, the multicollinearity between built-

environment variables cause a number of insignificant and counter-intuitive coefficients, which 

impairs the power of the models in informing policy design. Factor analysis helps get more 

interpretable results. 

The empirical results suggest that property values are positively associated with 

“connectivity” and “walkability”, and negatively related to “inaccessibility to transit and jobs” 

and “auto dominance”. The built-environment effects depend on neighborhood characteristics. 

Households living within walking distance to transit stations pay higher premiums for good 

accessibility to transit, jobs, and non-work destinations, good connectivity, and good walkability 

than other households. 

The research findings have important policy implications. Generally, this study suggests 

smart-growth policies that focus on increasing transit accessibility, bringing jobs closer to 

residence, creating traditional type, well-connected, high-density neighborhoods, reducing auto 

speed with traffic management measures and improving pedestrian environment are positively 

associated with residential property values. Although finding association is different from 

constructing causality, the research findings still provide some support for the argument that 

smart growth can improve quality of life of neighborhoods, thus increase local property values 

(Nelson et al. 2002). Sorting out the impact of smart growth on local neighborhoods may help 
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relieve the concerns about smart growth at the local level. The existence of submarkets for the 

built environment suggests that smart-growth-type built-environment characteristics do not have 

universal appeal to households, but they no doubt satisfy an important market segment.
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CHAPTER FIVE: SELECTIVITY, SPATIAL AUTOCORRELATION, AND 

VALUATION OF THE BUILT ENVIRONMENT 

5.1 INTRODUCTION 

Houses are heterogeneous goods, and their prices depend on the level and quality of their 

characteristics. These characteristics include not only structural attributes of the house per se, but 

also characteristics of the location. As an important component of locational factors, the built 

environment could influence property values as indicated by various analysts (e.g., Cao and Cory 

1981; Song and Knaap 2004; Bowes and Ihlanfeldt 2001; Matthews and Turnbull 2007; and 

Rodriguez and Mojica 2009).  

From a policy perspective, analysts need to understand how the built environment is 

valued by households in the market place. To reduce transportation energy use and emissions 

and achieve sustainable metropolitan growth, various smart-growth policies are currently 

implemented by governments and planning agencies. These policies aim to reshape household 

travel behavior and curb travel demand by changing the built environment via such mechanisms 

as regional planning, zoning, and provisions of alternative transportation modes. On the one 

hand, gauging the built-environment effect on property values makes it feasible for analysts to 

discuss and quantify the implicit tradeoffs associated with smart-growth policies on a 

neighborhood. On the other hand, capturing the value-added effect of certain built-environment 

features such as transit accessibility provides policy makers a potential public-financing 

mechanism to relieve the heavy financial burdens facing governments and transit agencies 

worldwide.  

The dominant technique to value housing attributes is hedonic-price analyses, pioneered 

by Griliches (1971) and formalized by Rosen (1974). This method is easily replicable, and is 
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thus widely used in application. Many previous analysts have investigated the property-value 

effect of various built-environment attributes using hedonic-price models, such as land-use mix 

(e.g., Cao and Cory 1981; Song and Knaap 2004), transit accessibility (e.g., Bowes and 

Ihlanfeldt 2001; Rodriguez and Mojica 2009), and street network layout (e.g., Matthews and 

Turnbull 2007). However, the conventional hedonic-price approach may suffer from two major 

limitations in valuing housing attributes: 

First, the OLS-based hedonic-price analysis can generate biased estimates of the 

willingness-to-pay (WTP) for housing attributes when the assumption that these attributes are 

exogenous to sample selection is violated. Heckman (1979) discusses the bias that results from 

using non-randomly selected samples to estimate behavioral relationships as an "omitted 

variables" bias. Analysts usually calibrate hedonic-price models with samples of sold properties. 

In the housing market, only a small fraction of properties sells in a single quarter or year. If the 

sample of sold properties is a non-random sample of the housing stock, the hedonic-price model 

may generate biased estimates (Gatzlaff and Haurin 1998). A number of analysts have explored 

the impact of sample selection in the housing market, such as Haurin and Hendershott (1991), 

Jud and Seaks (1994), Gatslaff and Haurin (1998), and Hwang and Quigley (2004). 

The importance of the selection bias depends on the purpose of study. If it is intended to 

improve measures of the market prices of housing attributes of sold properties, then the 

selectivity issue is not relevant. If analysts intend to use the model to make an inference about 

the housing stock, however, they cannot ignore the sample selection bias. To assess the property-

value effect of smart-growth policies on local neighborhood or design land value capture scheme 

to support infrastructure investment, analysts may find it relevant to understand the impact of the 

built environment on the entire housing stock. 
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Second, a hedonic valuation of housing attributes can be misleading when spatial 

autocorrelation exists. In spatial-data analyses, a spatial autocorrelation refers to the phenomenon 

that a value observed in one location depends on the values at neighboring locations. There is 

consistent evidence that property values exhibit a systematic pattern in their spatial distribution 

(see, e.g., Basu and Thibodeau 1998, among others). Analysts apply various approaches to deal 

with the spatial autocorrelation, for example, the spatial econometric techniques (Anselin 1993), 

the Cokriging approach (Chica-Olmo 2007) and the Geographically Weighted Regression 

approach (Fotheringham, Brunsdon, and Charlton 2002). 

In this paper, I contribute to the literature by accounting for both selectivity and spatial 

autocorrelation in valuing the built environment. I apply the Heckman two-step procedure to 

correct for sample selection bias, and integrate spatial econometric techniques into the Heckman-

selection model to overcome spatial autocorrelation. Based on the modeling results, I compute 

the willingness-to-pay for built-environment attributes and compare them with results of 

conventional OLS-based hedonic-price analysis to investigate the impact of selectivity and 

spatial autocorrelation in the valuation. 

This paper is organized as follows. Section 5.2 describes the analysis techniques. Section 

5.3 introduces an empirical study for the City of Boston, including datasets, variables, and 

modeling results. Section 5.4 summarizes research findings and discusses policy implications. 

5.2 METHODOLOGY 

Hedonic-price model is widely used in the valuation of housing attributes. A conventional 

hedonic-price model can be specifies as: 

itittiktkijtjit DZXP εγβα +++= ∑∑∑ln                                                                     (1) 
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where Pit is the transaction price of property i; Xijt is a set of j structural characteristics; Zkjt is a 

set of k locational characteristics, including built-environment attributes; Dit is a set of dummy 

variables such that they take the value 1 for transactions taken place in time period t, and 0 

otherwise; and εit is normally distributed with a mean zero random error. 

In this study, I employ a housing sales model used by Gatzlaff and Haurin (1998). This 

model represents a double-sided search market with heterogeneous participants and 

heterogeneous properties. Observable transaction prices are derived from the interaction between 

two populations of market participants: potential buyers on the demand side and potential sellers 

on the supply side. In the housing market, both the buyer and the seller have their own 

evaluations of the asset-specific characteristics, which lead to their prices for the properties. The 

hedonic-price equations for the buyer and the seller take the following forms, respectively:  

b
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where b
itP is the offer price of the buyer and s

itP is the reservation price of the seller for house i; 

ijt
b
j Xα and ikt

b
k Zβ components reflect the systematic valuation of structural and locational 

characteristics common to all potential buyers; ijt
s
j Xα and ikt

s
k Zβ  reflect the systematic valuation 

of structural and locational characteristics common to all potential sellers; )( s
i

b
i εε is normally 

distributed with a mean zero random error. 

I consider a transaction is completed when the buyer’s offer price is higher than or equal 

to the seller’s reservation price. Thus, properties sold in the market are not necessarily random 

draws from the population of houses. The possibility of sample selection bias arises when the 
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unobserved housing characteristics affecting the transaction-sales propensity also influence the 

transaction-price level. The transaction price can be modeled as: 

)(ln s
it

b
ititittiktkijtjit PPDZXP ≥+++= ∑∑∑ εγβα                                                    (4) 

It should be noted that the error term in Equation (4) may have a nonzero mean because 

the observed transaction sample contains only selected properties, i.e., houses with a buyer’s 

offer price higher than or equal to the seller’s reservation price. When 0]|[ ≠≥ s
it

b
itit PPE ε , an 

OLS regression using the observed transactions produces biased estimates. 

To correct for the potential sample selection bias, I apply the Heckman two-step 

procedure (Heckman 1979).  In the first step, I model the probability that a property is sold with 

a binary-probit model. I use Sit to denote the outcome, and *
itS  to denote the difference between 

the offer and reservation prices. It should be noted that *
itS  is not observable, only the outcome Sit 

can be observed. 
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Equation (5) is calibrated as a probit model using the entire housing stock: 

][]1Pr[ iktkijtjit ZXS ∑∑ +Φ== μϖ                                                                               (6) 

where Φ is the cumulative distribution function of standard normal distribution. Based on the 

estimation results of the probit model, I compute the inverse mills ratio as:  

)(/)( iktkijtjiktkijtjit ZXZX ∑∑∑∑ +Φ+= μϖμϖφλ                                                 (7) 

where φ and Φ denote the probability-density function and cumulative-distribution function of 

the standard normal distribution, respectively. In the second step of the Heckman procedure, the 
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inverse mills ratio is included as an independent variable in the standard hedonic-price model, 

such that   

ititittiktkijtjit DZXP εχλγβα ++++= ∑∑∑ln                                                          (8) 

The inclusion of the inverse mills ratio corrects for the bias due to sample selection (Heckman 

1979).  

The classical Heckman procedure does not account for spatial autocorrelation. To solve 

the spatial autocorrelation problem, I integrate spatial econometric techniques into the Heckman-

selection model. In the second step of the Heckman procedure, I expand the standard Heckman-

selection model by adding in two spatial autoregressive terms to correct for two types of spatial 

autocorrelation respectively. For the first type of spatial autocorrelation, I assume that value of a 

property is influenced by the characteristics of neighboring properties. In this case, the OLS 

estimation will be biased and inefficient. This type of spatial autocorrelation can be solved by 

adding an additional regressor in the form of a spatially-lagged dependent variable to the 

regression, as is shown in Equation (9).  

ititittiktkijtjPit DZXWP εχλγβαρ +++++= ∑∑∑lnln                                             (9) 

where WlnP is the spatial lag variable; ρ is a spatial lag correlation parameter, and ε is an Nx1 

vector of i.i.d. standard normal errors. For the second type of spatial autocorrelation, I assume 

that housing attributes captured by the model have only local effects, but factors missing from 

the model specification are spatially correlated. In this case, the OLS estimation will be 

inefficient. This type of spatial autocorrelation can be corrected for by adding a spatially-lagged 

error term into the model, as is shown in Equation (10). 
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where Wε is the weighted average of error terms in neighboring areas; τ is a spatial-error 

correlation parameter, and μ is an Nx1 vector of i.i.d. standard normal errors. 

5.3 EMPIRICAL ANALYSIS  

In this section, I present an empirical analysis based on the analytic framework discussed in 

Section 5.2. 

5.3.1 Study Area and Data 

The study area of the empirical analysis is City of Boston5, the central part of the Boston 

Metropolitan Area. Figure 13 shows a map of Boston. 

                                                 
5 I can only get housing stock data in the City of Boston. Therefore, in the third study, I use City of Boston as the 
study area. The first two essays use the Boston Metropolitan Area as the study area. 
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Source: The author. 
 
Figure 13: City of Boston 

On the housing side, I use both the transaction and stock data of single-family properties6 

in the City of Boston. The assessing records from the Assessing Department of Boston contain 

detailed information about all residential properties in the city, such as structural characteristics, 

                                                 
6 In this study, single-family properties refer to properties with property type code “101” as defined by MassGIS. 



  

 88

tax information, and street address. The total number of single-family properties7 in Boston is 

about 30,000, varying slightly over time. The housing transaction records from the Suffolk 

County Registry of Deeds provide data on all single-family housing transactions over the study 

period (1998-2007), including date of sale, transaction price, and street address. I link the 

transaction data to the assessing data based on street address using GIS tools. After excluding 

transactions that are unreliable or cannot be matched to the assessing data, there are 10,031 

single-family housing transactions in the study period. The final datasets for analysis include a 

total of 1,198,031 observations, which is comprised of every parcel of single-family properties in 

Boston multiplied by the number of quarters the house was included in the assessing data. 

Because characteristics of unsold properties are included in the assessing data, I can apply the 

Heckman two-step procedure to correct for sample selection bias. 

The built-environment data come from spatially-detailed datasets provided by MassGIS – 

the State’s Office of Geographic and Environmental Information, including location of common- 

trip destinations, spatial distribution of households and jobs, land use, and transportation 

networks.  

5.3.2 Variable Generation 

For each single-family property in the City of Boston, I create four sets of variables: (1) built-

environment variables; (2) structural attributes; (3) neighborhood socioeconomic characteristics; 

and (4) macroeconomic measures for each quarter during the study period. 

One well-known challenge in spatial analysis is the Modifiable Areal Unit Problem 

(MAUP) – the inconsistency in measurement results and statistical analyses due to the choice of 

                                                 
7 In this study, single-family properties are defined as properties with state use code “101”. 
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neighborhood boundaries. To mitigate the MAUP, the basic spatial unit used in this study is a 

250x250m grid cell layer developed by MassGIS as discussed in Chapter 2. 

5.3.2.1 Built-Environment Variables 

Based on literature, I compute 10 built-environment variables along four dimensions: density, 

land-use mix, street-network layout, and accessibility8. I use GIS and database management tools 

extensively in the computation.  

Density: Density is an important indicator of the built environment. Population density 

(population divided by land area) is widely used in previous studies as a measure of density. 

However, the way density is measured can introduce significant bias when the proportion of 

residential use differs across neighborhoods. In this study, I compute residential density 

(population divided by the area of residential use) to capture a more realistic meaning of density. 

Population and household data are from the 2000 Census and constrained by MassGIS to those 

areas identified as residential by the 2000 land use dataset. MassGIS further allocated population 

and households to 250x250m grid cells. I assign the residential density in the 9-grid-cell 

catchment area to each grid cell. 

Land-use mix: Land-use mix measures the degree to which land uses are mixed and 

balanced within the neighborhood. A greater mix of uses could facilitate walking and biking, 

reduce vehicle trips generated and vehicle miles traveled, and enhance urban aesthetics. This 

study uses a computational method based on the concept of entropy (Turner, Gardner, and 

                                                 
8 The selection of 10 built-environment variables in Essay 3 is different from the previous two essays using 27 built-
environment variables or 5 built-environment factors. The major reason is that the City of Boston has much smaller 
variation in the built environment than the Metro Boston. I tried applying factor analysis to the built-environment 
variables in City of Boston, but did not get meaningful factors. Therefore, in Essay 3, I select 10 built-environment 
variables that are identified as theoretically important and practically popular by literature. 



  

 90

O’Neill 2001). The idea is that a neighborhood containing each of the land-use types in the same 

proportions would obtain a maximum entropy value. It is computed as:    

)ln(/)ln(* JPP j
j

j∑−                                                                                                      (11) 

where Pj is the proportion of land in the jth land-use category and J is the total number of land-

use categories considered. In this study, J=5: single family, multi-family, commercial, industrial, 

and recreation and open space. This measure varies between 0 and 1. A value of 0 means the 

land is exclusively dedicated to a single use, while a value of 1 suggests perfect mixing of the 

five land-uses. I first compute the land-use-mix index for each 250x250m grid cell. Then, I 

assign each grid cell a value that equals the mean of the nine grid cells in the catchment area. 

Street network layout: The layout of street networks is also an important factor of the 

built environment. To show the differences between the sprawl and traditional type of block 

patterns, I compute intersection density in each grid cell’s catchment area as an indicator. 

Accessibility: It is well-known that good accessibility can save the transportation cost of 

households, thus be capitalized into property values. In this study, I aim to capture the property-

value effects of accessibility to activity centers such as jobs, non-work destinations, and the 

central business district (CBD), as well as the effects of accessibility to transportation networks, 

including subway station, commuter rail station, Massachusetts Bay Transit Authority (MBTA) 

park-and-ride lots, and highway exits,.  

The job accessibility measure I use in this study is a gravity-type job accessibility 

indicator computed at the transportation analysis zone (TAZ) level, which takes the following 

form known as the Hansen accessibility model (Hansen 1959):  

)( ij
j

ji CfOA ∑=                                                                                                             (12) 
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where )*exp()( ijij CCf β−= , Oj is the number of jobs in TAZ j, f(Cij) is an impedance function, 

Cij is the network distance between TAZ i and j. β is set to 0.1, based on Zhang’s calibration 

using an Activity–Travel Survey conducted by the Central Transportation Planning Staff for the 

Boston region (Zhang 2005). 

MassGIS utilizes the Dun and Bradstreet business-location database to identify locations 

of 27 types of common non-work destinations in Metro Boston and computes a weighted average 

minimal Euclidian distance to major non-work destinations9 at 250x250m grid cell level. They 

use the national average trip rate for each type of non-work destination from the 2001 National 

Household Transportation Survey as the weight in the computation.  

The distance to CBD indicator measures the Euclidian distance to the Downtown 

Crossing subway station, which locates at the center of Boston’s CBD area. 

In this study, I compute four indicators to measure accessibility to transportation 

networks, including (1) presence of subway station within half mile, (2) presence of commuter 

rail station within half mile, (3) distance to MBTA parking lots, and (4) distance to highway 

exits. Presence of subway station (or commuter rail station) within half mile is a dummy 

variable, which takes the value 1 if a subway station (or commuter rail station) is within half 

miles of the property, and 0 otherwise. The distance to highway exits and distance to MBTA 

parking lots indicators are both measured as Euclidian distances to the corresponding 

transportation nodes. The MBTA provides parking space at some subway stations and commuter 

rail stations for travelers switching to transit.  

                                                 
9 Common trip destination types covered include grocery stores, pharmacy, banks, daycare centers, auto repair 
stores, gas stations post offices, bars, clothing stores, convenience stores, dentist offices, drycleaners, fitness centers, 
beauty/nail salons and barber shops, hardware stores and home centers, motion picture theaters, museums, historical 
sites, performing arts centers/theaters, physician offices, non-physician, non-dentist, medical doctor offices, 
restaurants, sport facilities, veterinary service locations, religious institutions, and schools. 
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Unlike pervious studies that focus primarily on the built-environment effect on property 

values, this study also tries to investigate the built-environment effects on the probability of 

housing sales, which may lead to the sample selection bias in valuing the built environment. 

5.3.2.2 Structural Variables 

I select nine structural variables in the analysis: (1) lot size, (2) gross area, (3) year built, (4) 

number of floors, (5) total number of rooms, (6) number of full baths, (7) number of half baths, 

(8) a dummy variable showing the existence of air conditioning, and (9) number of fireplaces. 

Lot size and gross area are both measured in logarithms. The structural characteristics could 

influence both the probability of housing sale and transaction price, as suggested by previous 

analysts (e.g., Gatzlaff and Haurin 1998). 

5.3.2.3 Socioeconomic Variables 

Socioeconomic characteristics of the neighborhood could also influence property values. To 

control for this effect, I include percentage of white population as a measure of racial 

composition, and median household income as a measure of wealthy level. I measure both 

variables at the census-block-group level. 

5.3.2.4 Macroeconomic Variables 

National and local economic conditions may help explain variations in the probability of housing 

sales (Jud and Seaks 1994). To capture this impact, I include three variables, representing the 

gross national product (GNP), the national level mortgage rate, and the local unemployment rate. 

I expect that heightened economic activities increase the probability of housing sales. 

Table 14 presents the descriptive statistics of the sold sample and the housing stock.  
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TABLE 14: Descriptive Statistics 

  Sold Properties All Properties 

Variable Obs. Mean 
Std. 

Dev. Obs. Mean 
Std. 

Dev. 
ln(transaction price) 10031 12.644 0.598    
       
Structural Variables       
ln(lot size) 10031 8.267 0.690 1198031 8.366 0.640 
ln(gross area) 10031 7.897 0.313 1198031 7.910 0.312 
Year built 10031 1921 48.538 1198031 1924 43.973 
Number of floors 10031 1.909 0.586 1198031 1.848 0.560 
Total number of rooms 10031 7.142 1.780 1198031 7.148 1.795 
Number of full bath 10031 1.362 0.613 1198031 1.291 0.560 
Number of half bath 10031 0.526 0.549 1198031 0.518 0.547 
Presence of A/C 10031 0.135 0.342 1198031 0.097 0.295 
Number of fireplaces 10031 0.543 0.849 1198031 0.522 0.754 
       
Built-Environment Variables       
Population density (k/km2) 10031 5.773 3.527 1198031 5.350 3.260 
Land-use mix 10031 0.439 0.241 1198031 0.423 0.236 
Intersection density (1/km2) 10031 116.771 40.629 1198031 113.288 37.416 
Presence of subway sta. within half mile 10031 0.336 0.472 1198031 0.293 0.455 
Presence of commuter rail sta. within half mile 10031 0.345 0.475 1198031 0.351 0.477 
Distance to MBTA parking lots (km) 10031 1.717 1.173 1198031 1.643 1.139 
Distance to highway exits (km) 10031 3.271 1.796 1198031 3.382 1.740 
Distance to CBD (km) 10031 8.068 3.548 1198031 8.535 3.390 
Job accessibility (k) 10031 461.346 94.496 1198031 448.635 89.111 
Distance to non-work destinations (km) 10031 1.006 0.250 1198031 1.036 0.247 
       
Macroeconomic Variables       
GNP (billion $) 10031 11406 1655 1198031 11224 1670 
Mortgage rate 10031 6.531 0.716 1198031 6.617 0.739 
Local unemployment rate 10031 4.204 0.999 1198031 4.121 1.043 

Source: Calculated by the author. 
 

Compared with the housing stock, the sold sample on average has a smaller lot size and 

gross area, more floors, bath rooms, and fireplaces, and is older in age and more likely to have 

air conditioning. Generally, the sold properties also tend to locate in smart-growth type 
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neighborhoods with higher population density, land-use mix, and intersection density, better 

accessibility to transit stations and highway exits, a little further away from park-and-ride lots, 

but closer to jobs, non-work destinations and the CBD area than the housing stock. The 

differences between the sold properties and the housing stock suggest the potential existence of 

selection bias. 

It may be helpful to look at the temporal change in the characteristics of the housing 

transactions. Table 15 presents the average structural and built-environment characteristics of the 

sold properties year-by-year. During the study period, the average transactions price started 

growing from 1998, peaked in 2005 and decreased slightly in 2006 and 2007. The last column in 

Table 16 shows the correlations of housing attributes and transaction price. When I focus on 

housing attributes with correlation coefficients significantly different from 0, I find that more 

transactions of relatively low-quality properties (small gross area, old in age, few floors and 

rooms) occurred as the housing price increases. One possible explanation is that households 

became "priced out" of the top tier of expensive properties. The average built-environment 

attributes of the sold properties also varies with time. In particular, population density, proximity 

to commuter rail stations, and job accessibility are negatively correlated with transaction price, 

while distance to CBD is positively associated with transaction price. Although a simple 

univariate analysis, it suggests that different pools of properties are transacted over time, which 

might be another indication of the sample selection problem. 
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TABLE 15: Annual Changes in Structural and Built-Environment Characteristics of the Sold Properties 

 Variables 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 
Corr. with 

ln(price) 
ln (price) 12.04 12.15 12.36 12.49 12.65 12.77 12.88 12.94 12.89 12.89  
Structural Variables            
ln(lot size) 8.27 8.23 8.23 8.19 8.23 8.24 8.32 8.32 8.32 8.26 0.512 
ln(gross area) 7.92 7.91 7.90 7.89 7.90 7.90 7.89 7.88 7.89 7.91 -0.685** 
Year built 1917 1916 1917 1920 1917 1919 1926 1927 1926 1924 0.833***
Number of floors 1.95 1.93 1.96 1.96 1.94 1.91 1.88 1.84 1.85 1.92 -0.702** 
Total number of rooms 7.27 7.28 7.20 7.12 7.22 7.20 7.12 7.00 6.94 7.17 -0.713** 
Number of full bath 1.36 1.36 1.37 1.35 1.35 1.32 1.39 1.37 1.33 1.40 0.133 
Number of half bath 0.51 0.52 0.50 0.53 0.49 0.48 0.55 0.55 0.55 0.56 0.452 
Presence of A/C 0.12 0.12 0.14 0.13 0.12 0.09 0.15 0.15 0.14 0.17 0.452 
Number of fireplaces 0.59 0.55 0.50 0.51 0.45 0.51 0.56 0.61 0.54 0.59 0.099 
Built-Environment Variables            

Population density (k/km2) 5.95 6.09 6.08 6.05 5.89 5.86 5.52 5.32 5.50 5.90 -0.738** 
Land-use mix 0.44 0.45 0.44 0.44 0.45 0.46 0.42 0.42 0.43 0.44 -0.308 
Intersection density (1/km2) 118.21 118.29 120.48 118.28 116.91 118.16 114.37 113.39 113.98 119.00 -0.607* 
Presence of subway station within half mile 0.34 0.36 0.36 0.38 0.36 0.35 0.30 0.30 0.30 0.36 -0.523 
Presence of commuter rail station within half 
mile 

0.36 0.38 0.35 0.35 0.35 0.33 0.31 0.35 0.34 0.34 -0.712** 

Distance to MBTA parking lots (km) 1.71 1.77 1.78 1.75 1.77 1.76 1.69 1.60 1.69 1.73 -0.477 
Distance to highway exits (km) 3.28 3.14 3.15 3.21 3.25 3.11 3.39 3.45 3.36 3.22 0.480 
Distance to CBD (km) 7.93 7.80 7.73 7.63 7.82 7.86 8.38 8.60 8.48 7.95 0.630* 
Job accessibility (k) 464.64 468.67 470.13 471.99 467.33 466.46 453.22 447.95 450.22 466.03 -0.614* 
Distance to non-work destinations (km) 1.01 0.99 0.98 0.98 1.00 0.99 1.03 1.04 1.03 0.99 0.500 
*, **, and *** denote significant at the 0.10, 0.05, and 0.01 level, respectively. 
Source: Calculated by the author.
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5.3.3        Estimation Results 

In this study, I calibrate four models to value the built environment and assess the impact of 

selectivity and spatial autocorrelation by comparing the estimation results across models. The 

models are: 

1. Conventional hedonic-price model (Equation 1); 

2. Classical Heckman-selection model (Equations 6 and 8); 

3. Heckman-selection model with spatially-lagged dependent variable (Equations 6 and 9, 

referred to as Heckman-selection model with spatial lag thereafter), and 

4. Heckman-selection model with spatially-lagged error term (Equations 6 and 10, 

referred to as Heckman-selection model with spatial error thereafter).  

Models 2-4 are based on the Heckman two-step procedure. In the first step of the 

Heckman procedure, I use structural variables, macroeconomic variables, built-environment 

variables, 15 neighborhood dummy variables, and 3 quarter dummy variables to predict the 

probability that a property is sold in the market using a probit model. I base the neighborhood 

dummy variables on planning districts defined by the Boston Redevelopment Authority, which is 

widely used in planning practice. The default is East Boston. Q2, Q3, and Q4 are three dummy 

variables that take the value of 1 when the transaction took place in quarter 2, quarter 3, and 

quarter 4 respectively, and 0 otherwise. Table 16 reports estimation results of the probit model.  
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TABLE 16: Estimation Result of the Probit Model 

Variables Coef. t-Stat.   
Constant -0.9059 -3.06 *** 
   
Structural Variables   
ln(lot size) -0.0598 -5.75 *** 
ln(gross area) -0.1110 -5.96 *** 
Year built -0.0002 -3.54 *** 
Number of floors 0.0254 2.69 *** 
Total number of rooms -0.0065 -2.17 ** 
Number of full bath 0.0866 11.01 *** 
Number of half bath 0.0253 3.46 *** 
Presence of A/C 0.1206 10.08 *** 
Number of fireplaces 0.0157 2.86 *** 
   
Macroeconomic Variables   
GNP 0.0074 2.77 *** 
Mortgage rate -0.0683 -7.04 *** 
Unemployment rate -0.0122 -1.90 * 
   
Built-Environment Variables   
Population density (k/km2) 0.0047 2.11 ** 
Land-use mix 0.0022 0.10  
Intersection density (1/km2) -0.0003 -1.58  
Presence of subway station within half mile 0.0163 1.43  
Presence of commuter rail station within half mile 0.0082 0.86  
Distance to MBTA parking lots (km) -0.0025 -0.32  
Distance to highway exits (km) -0.0018 -0.30  
Distance to CBD (km) 0.0201 2.23 ** 
Job accessibility (k) 0.0011 3.28 *** 
Distance to non-work destinations (km) -0.0734 -2.56 *** 
   
Neighborhood Dummy Variables   
Charlestown -0.1603 -3.58 *** 
South Boston -0.1411 -4.44 *** 
Central -0.1966 -2.62 *** 
Back Bay -0.3967 -7.17 *** 
South End -0.2751 -5.55 *** 
Fenway -0.3013 -2.86 *** 
Allston/Brighton -0.1375 -2.70 *** 
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Jamaica Plain -0.0199 -0.45  
Roxbury -0.0843 -2.04 ** 
North Dorchester -0.0336 -0.81  
South Dorchester -0.0031 -0.10  
Mattapan -0.0885 -2.39 ** 
Roslindale 0.0240 0.51  
West Roxbury -0.0523 -1.04  
Hyde Park 0.0101 0.21  
   
Quarter Dummy Variables   
Q2 0.1505 13.79 *** 
Q3 0.1697 15.72 *** 
Q4 0.0817 6.95 *** 
    
Observations 1198031   
LR chi-square(40) 1174.76 (p=0.000)   
*, **, and *** denote significant at the 0.10, 0.05, and 0.01 level respectively. 
Source: Estimated by the author using Stata 10. 

 

The probit model is highly significant as shown by the value of χ2 for testing the null 

hypothesis that coefficients of independent variables are simultaneously 0. The probability of 

housing sale differs for properties with different structural characteristics. Generally, smaller 

properties with smaller lot size, smaller gross area, and fewer rooms are more likely to sell than 

are larger properties. Older properties have a higher sale propensity than newer ones. Meanwhile, 

the sale probability is positively associated with numbers of floors, bathrooms and fireplaces, 

and the existence of air conditioning. The estimated coefficients for macroeconomic variables 

suggest that increased economic activity raise the probability of sale. The GNP variable has a 

positive and significant coefficient, as expected. The local unemployment rate variable has the 

expected negative sign, but its impact is only marginally significant at the 0.10 level. The 

negative sign of the mortgage rate variable shows that lower rates increase housing sales. The 

significance of multiple built-environment variables confirms the impact of the built 
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environment on the probability of sale. Single-family properties in dense area, with good job 

accessibility, close to non-work destinations, but far away from the CBD, are more likely to be 

sold in the market than those with the opposite characteristics. The impacts of other built-

environment variables are insignificant. There is also evidence that the probability of sale varies 

across neighborhoods and quarters of year for identical properties. 

Table 17 compares the estimation results of the hedonic-price model, Heckman-selection 

model, Heckman-selection model with spatial lag, and Heckman-selection model with spatial 

error. The spatial weight matrix for the last two models is developed assuming constant spatial 

dependence between properties until a maximum distance is reached. The maximum Euclidean 

distance I used is 400m.  
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TABLE 17: Estimation Results of the Price Model 

  (1) Hedonic-price model (2) Heckman-selection 
model 

(3) Heckman-selection 
model with spatial lag 

(4) Heckman-selection 
model with spatial error 

  Coef. t-Stat.   Coef. t-Stat.   Coef. t-Stat.   Coef. t-Stat.   
Constant 6.5999 34.43 *** 3.6700 17.15 *** 1.5741 7.35 *** 6.5317 12.97 *** 
             
Structural Variables             
ln(lot size) 0.0677 8.50 *** -0.0062 -0.76  0.0248 3.16 *** 0.0353 2.46 ** 
ln(gross area) 0.2590 17.24 *** 0.0970 6.19 *** 0.1495 9.95 *** 0.1741 6.62 *** 
Year builta -0.0281 -4.13 *** -0.0716 -10.58 *** -0.0500 -7.71 *** -0.0404 -5.21 *** 
Number of floors 0.1150 15.41 *** 0.1373 18.95 *** 0.1010 14.39 *** 0.1012 11.68 *** 
Total number of rooms 0.0112 4.63 *** 0.0008 0.35  0.0070 3.07 *** 0.0057 2.27 *** 
Number of full bath 0.1154 18.49 *** 0.2421 31.81 *** 0.1702 22.21 *** 0.1467 8.09 *** 
Number of half bath 0.0483 8.09 *** 0.0835 14.15 *** 0.0662 11.69 *** 0.0647 8.90 *** 
Presence of A/C 0.1136 11.98 *** 0.3164 26.81 *** 0.2168 18.41 *** 0.1938 7.58 *** 
Number of fireplaces 0.0922 22.30 *** 0.1002 25.04 *** 0.0719 18.36 *** 0.0612 12.27 *** 
             
Socioeconomic Variables             
Percent of population that is white 0.3642 28.56 *** 0.3546 28.81 *** 0.2488 20.11 *** 0.2405 6.63 *** 
Median household income (k$) 0.0048 20.67 *** 0.0041 18.09 *** 0.0022 9.77 *** 0.0008 2.40 ** 
             
Built-Environment Variables             
Population density (k/km2) 0.0180 11.61 *** 0.0237 15.68 *** 0.0145 9.89 *** 0.0049 1.60  
Land-use mix 0.0179 1.09  0.0063 0.40  0.0069 0.46  -0.0074 -0.27  
Intersection density (1/km2)a -0.0158 -1.41  -0.0521 -4.77 *** -0.0179 -1.71 * 0.0046 0.21  
Presence of subway station within half mile 0.0570 6.48 *** 0.0983 11.40 *** 0.0539 6.47 *** 0.0303 1.96 ** 
Presence of commuter rail station within half mile 0.0070 0.98  0.0136 1.98 ** 0.0111 1.70 * -0.0128 -1.01  
Distance to MBTA parking lots (km) -0.0838 -19.97 *** -0.0707 -17.33 *** -0.0384 -9.39 *** -0.0639 -3.38 *** 
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Distance to highway exits (km) -0.0095 -3.47 *** 0.0168 5.97 *** 0.0115 4.28 *** 0.0096 0.66  
Distance to CBD (km) 0.0650 19.97 *** 0.0654 20.84 *** 0.0303 9.42 *** 0.0086 0.68  
Job accessibility (k)a 0.3570 27.19 *** 0.3580 28.30 *** 0.1872 13.78 *** 0.1651 4.31 *** 
Distance to non-work destinations (km) 0.1276 6.08 *** -0.0387 -1.83 * 0.0039 0.20  -0.0862 -1.71 * 
             
Inverse mills ratio    1.9482 27.23 *** 1.1316 15.09 *** 1.0801 4.83 *** 
Spatially-lagged error term          0.8792 78.76 *** 
Spatially-lagged dependent variable       0.3705 28.22 ***    
             
R-square 0.7541   0.7711   0.7913   0.8091   
Log likelihood       -1671.86     -1222.22     -896.51     
*, **, and *** denote significant at the 0.10, 0.05, and 0.01 level respectively.  
a Coefficient is x 10-2. 
Source: Estimated by the author using Stata and GeoDa 0.9.5.
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In terms of goodness-of-fit statistics such as R-square and log likelihood, the Heckman-

selection model with spatial error outperforms the other three models. The spatially-lagged 

dependent variable and the spatially-lagged error term are both significant in the corresponding 

model, which confirms the existence of spatial autocorrelation. The coefficients of the inverse 

mills ratio in the three models using the Heckman procedure have a negative sign and are 

statistically significant. It suggests that the sample of sold properties is a non-random sample of 

the housing stock. Exclusive reliance upon the sample of sold properties tends to underestimate 

the value of properties in the entire housing stock. This result is consistent with Gatzlaff and 

Haurin (1998), while Jud and Seaks (1994), Gatzlaff and Haurin (1997), and Hwang and Quigley 

(2004) find that the housing-price index is overestimated as a result of sample selection bias.  

The inclusion of the spatially-lagged error term in the Heckman-selection model 

decreases the magnitude and significance level of the inverse mills ratio. My interpretation is that 

some omitted variables related to the choice of property are spatially correlated. Their effects on 

property values are partially captured by the spatially-lagged error term. Therefore, the inverse 

mills ratio, the independent variable used to correct sample selection, is correlated with the 

spatially-lagged error term, which explains the drop in the “importance” of the inverse mills 

ratio. 

In general, coefficients of most structural variables have expected signs and are 

statistically significant. In all models, higher median household income and higher percentage of 

white population tend to increase property values. Both coefficients are statistically significant at 

the 0.05 level. After controlling for structural and neighborhood socioeconomic characteristics, 

many built-environment variables still show significant associations with the transaction price. 
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The estimation results confirm the important role of accessibility in the housing market. 

Households in Boston pay a premium for living within walking distance to a subway station, as 

reflected by the positive and significant coefficients in all models. Controlling for selectivity can 

significantly increase the magnitude of this effect, but when spatial effects are further controlled, 

this premium decreases to a lower level before correction. Distance to MBTA parking lots has 

negative and significant coefficient, suggesting that households demand a negative premium for 

living faraway to park-and-ride lots. Accessibility to activity centers can also be capitalized into 

property values. Job accessibility has positive and highly significant association with property 

values as expected. Households pay a premium for proximity to non-work destinations according 

to the Heckman-selection model with spatial error, but this effect is marginally significant at the 

0.1 level. Other built-environment variables have insignificant coefficients in the Heckman-

selection model with spatial error.  

The estimation results of the four models can be used to derive a set of marginal implicit 

prices for each attribute that represents the household’s willingness-to-pay (WTP) for marginal 

increase in the individual housing attributes. Following Halvorsen and Palmquist (1980) and 

Crane et al. (1997), the WTP for a particular housing attributes i can be computed by  

PWTP ii )1)ˆ(exp( −= β                                                                                                     (13) 

where iβ̂ is the estimated coefficient of housing attribute i in a semi-log form price model and P 

is the transaction price. In this study, the WTP for built-environment attributes is computed for a 

property priced at 325.0 thousand dollars (the mean sale price of the sold sample). The results are 

reported in Table 18.  
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TABLE 18:  Willingness-to-Pay for Built-Environment Variables 

  (1) Hedonic-price model (2) Heckman-selection 
model 

(3) Heckman-selection 
model with spatial lag 

(4) Heckman-selection 
model with spatial error 

 Variables Coef. WTP(k$) Coef. WTP(k$) Coef. WTP(k$) Coef. WTP(k$)
Population density (k/km2)  0.0180 5.903 0.0237 7.794 0.0145 4.738 0.0049 1.605
Land-use mix 0.0179 5.861 0.0063 2.057 0.0069 2.259 -0.0074 -2.382
Intersection density (1/km2)a -0.0158 -0.051 -0.0521 -0.169 -0.0179 -0.058 0.0046 0.015
Presence of subway station within half mile 0.0570 19.075 0.0983 33.562 0.0539 17.993 0.0303 9.987
Presence of commuter rail station within half mile 0.0070 2.270 0.0136 4.442 0.0111 3.623 -0.0128 -4.137
Distance to MBTA parking lots (km) -0.0838 -26.119 -0.0707 -22.169 -0.0384 -12.234 -0.0639 -20.130
Distance to highway exits (km) -0.0095 -3.079 0.0168 5.513 0.0115 3.766 0.0096 3.127
Distance to CBD (km) 0.0650 21.814 0.0654 21.968 0.0303 10.007 0.0086 2.809
Job accessibility (k) a 0.3570 1.162 0.3580 1.166 0.1872 0.609 0.1651 0.537
Distance to non-work destinations (km) 0.1276 44.232 -0.0387 -12.337 0.0039 1.284 -0.0862 -26.855
a Coefficient is x 10-2. 
* Boldface denotes coefficients significant at the 0.1 level in the corresponding model. 
Source: Calculated by the author. 



  

 105

Based on the estimation results of the Heckman-selection model with spatial error, 

households in the City of Boston would like to pay an additional 10.0 thousand dollars (or 3.1% 

of property values) for living within walking distance to subway stations, 20.1 thousand dollars 

(or 6.2% of property value) for every kilometer closer to MBTA park-and-ride lots, 26.8 

thousand dollars (or 8.3% of property value) for every kilometer closer to non-work destinations, 

and 0.5 thousand dollars (or 0.2% of  property value) for one thousand additional spatially-

weighted job opportunities, for a property originally priced at 325.0 thousand dollars (the mean 

transaction price). The WTP estimates for the same built-environment attribute differ across the 

four models significantly, which suggests that selectivity and spatial autocorrelation have a 

significant impact in valuing the built environment. For example, based on the estimation results 

of the conventional hedonic-price model, the WTP for proximity to subway station is 19.1 

thousand dollars for a property valued at the mean transaction price. However, the amount 

decreases to 10.0 thousand dollars, when I control for selectivity and spatial error type 

autocorrelation. The related bias is about 91.0%. A bias of such magnitude could misinform 

relevant policy designs, such as land value capture schemes to fund public transportation or 

transit-oriented development. 

5.4 CONCLUSIONS 

In this paper, I explore the role that selectivity and spatial autocorrelation could play in valuing 

the built environment. Using the transaction and stock data for single-family properties in the 

City of Boston from 1998 to 2007, I apply the Heckman two-step procedure and spatial 

econometrics techniques to account for sample selection and spatial autocorrelation respectively. 

I calibrate the following four models: (1) a conventional hedonic-price model, (2) a classical 

Heckman-selection model, (3) a Heckman-selection model with spatially lagged dependent 
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variables, and (4) a Heckman-selection model with a spatially lagged error term. Based on the 

estimation results, I calculate the WTP for built-environment attributes. 

The empirical analysis suggests that the sample of sold properties is a biased sample of 

the housing stock. Simply estimating a hedonic-price model using the sold sample generates 

biased estimates of the WTP for the housing stock. My results confirm the significant impacts of 

the built environment on both the probability of housing sale and transaction price. Higher 

density, better job accessibility, proximity to non-work destinations, and distance from CBD 

could increase the probability that a house is sold in the market. Spatial autocorrelation indeed 

exist in the empirical analysis. The Heckman-selection model with spatial error has the highest 

explanatory power among the four models. The estimation results of this model reveal that 

households in Boston pay a premium for living within walking distance to subway stations, 

closer to MBTA park-and-ride lots and non-work destinations, and proximity to job 

opportunities. Meanwhile, there are significant variations in the WTP estimates across the four 

models, which suggest that selectivity and spatial autocorrelation could lead to significant bias in 

valuing the built environment.  

It should be noted that as the core part of the metro region, City of Boston exhibits a 

much smaller variation of built-environment characteristics compared to Metro Boston. This 

limitation may diminish the built-environment effects on both the probability of sale and 

transaction price and limit the generality of the results. Ideally, I hope to calibrate the same set of 

models for Metro Boston. However, I can only get all necessary data for the City of Boston, thus 

have to limit the study area to City of Boston. 

Nonetheless, the findings of this study have important policy implications in metropolitan 

planning. Biased estimates of the WTP for the built environment due to sample selection and 
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spatial autocorrelation might misguide policy recommendations for intervening urban-

development patterns and distort estimations of the value-added effect of infrastructure 

investment for land value capture programs.  

Smart-growth strategies often face the discrepancy between the regional and local 

interests in implementation. The region can benefit from smart-growth policies due to the 

reduction of transportation emissions, while local residents have to care about the impact of 

smart-growth policies on their own neighborhood. A fair estimate of the property-value effect of 

certain land-use-control policies could help assess the local effect of smart growth, reconcile 

regional and local benefits, and facilitate dialogues between regional planning agency, local 

government, and the public regarding alternative metropolitan growth scenarios. This study 

shows that in a dense urban area like Boston, properties values are positively associated with 

some smart-growth features such as transit accessibility, proximity to non-work and work 

destinations, after selectivity and spatial autocorrelation are accounted for. This may suggest that 

such smart-growth features can improve the quality of life and increase the property values in the 

local neighborhoods. 

Smart growth encourages travelers to switch from auto to transit. However, transit 

agencies are facing significant financial challenges worldwide. Meanwhile, property owners and 

developers are benefiting from increased property values generated by transportation 

improvements as suggested by many previous studies including this essay. Such benefits create a 

rationale for the use of value capture policies such as land value taxes and tax increment 

financing to capture some of the value-added effect of transportation investment to relieve the 

financial burdens of transit agencies. One barrier in land use capture is the assessment of land 

value increment. This study demonstrates that conventional hedonic price analysis may bring 
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significant bias in valuing the value-added effects of transit by omitting the selectivity and spatial 

autocorrelation issues. The methodology applied in this study could help governments and transit 

agencies to make informed decisions in designing land value capture programs. 
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CHAPTER SIX: CONCLUSIONS AND IMPLICATIONS 

The world is undergoing a rapid urbanizing process. The UN (2001) projects that by 2030 an 

additional 2 billion people will be added to the world's urban areas. In the face of this urban 

growth, on the one hand, we need to accommodate the increasing travel and land needs for 

economic development and human welfare. On the other hand, we need to mitigate the 

associated negative effects, for example, congestions, emissions, and exhaustion of non-

renewable resources, to make the metropolitan growth sustainable. The U.S. 2000 Census data 

and the vehicle safety inspection records from the Registry of Motor Vehicles used in this study 

draw a clear picture of the transportation emissions produced in the Boston Metropolitan Area. 

In 2000, 4.31 million individuals and 1.64 million households are living in the 164 municipalities 

of Metro Boston. They own 2.47 million private passenger vehicles10. On average, each vehicle 

drives 33.2 miles everyday, which adds up to 82.0 million miles per day, and 29.9 billion miles 

per year in the Metro. If we assume that the average fuel-efficiency of passenger vehicles is 22.1 

miles per gallon11 and a gallon of gasoline produces 8.8 kilograms of CO2
12, then 1.35 billion 

gallons of gasoline are consumed and 11.9 million tons of CO2 are generated annually. In 

Massachusetts, the transportation sector alone currently accounts for 36% of the overall carbon 

emissions13, and this proportion is projected to continue increasing in the next decade14.  

The major focus of this study is a seemingly straightforward question: could the built 

environment play a role in reducing transportation emissions and achieving sustainable 

                                                 
10 Based on vehicle safety-inspection records from 2005-2007. 
11 According to Research and Innovative Technology Administration, Bureau of Transportation Statistics, the 
Average U.S. passenger car fuel efficiency is 22.1 miles per gallon in 2005. 
12 Source: Greenhouse Gas Emission for a Typical Passenger Vehicle, U.S. Environmental Protection Agency (EPA) 
report EPA420-F-05-004. 
13 Source:  Massachusetts Department of Transportation from U.S. Energy Information Administration.  
14 Source: Statewide Greenhouse Gas Emissions Levels: 1990 Baseline and 2020 Business as Usual Projections, MA 
DEP July 1st, 2009. 
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metropolitan growth? And if so, what role? To answer this research question, I structured the 

dissertation in three separate essays, focusing on two aspects of the land use-transportation 

interconnection, respectively: the impact of the built environment on travel behavior and the 

impact of the built environment on development patterns. This study benefits from several new-

available administrative datasets with detailed location information and broad coverage: (1)  the 

vehicle safety-inspection records for all the private vehicles registered in Metro Boston (about 

2.47 million vehicles in total) from the Registry of Motor Vehicles; (2) the housing transaction 

records for all single-family housing transactions in Metro Boston during 2004-2006 (about 93 

thousand transactions in total)  from city and town assessors provided by the Warren Group; (3) 

the housing transaction records for all single-family housing transactions in the City of Boston 

during 1998-2007 provided by the Suffolk County Registry of Deeds; and (4) the assessing 

records for all single-family properties in the City of Boston from the Assessing Department of 

Boston. The study confirms the important role that the built environment can play in sustainable 

metropolitan growth. It demonstrates that a large portion of the variation in household vehicle 

miles traveled (VMT) can be explained by the variation in the built environment. Although the 

study is cross-sectional, the results suggest that smart growth could significantly reduce VMT by 

altering the built environment that requires people to drive. The variation in the built 

environment does appear to be capitalized into property values. Smart-growth-type built-

environment features such as accessibility, connectivity, and walkability are positively associated 

with property values. The value-added effects of these smart-growth features provide a potential 

financing mechanism for governments and agencies to support environmental-friendly 

transportation modes and development patterns via land value capture. However, selectivity and 

spatial autocorrelation need to be accounted for when valuing land value increments.  
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6.1 SUMMARY OF EMPIRICAL FINDINGS 

Boston is one of the few metropolises in the United States that offer a rich variety of built-

environment characteristics and travel choices. The public transportation network and biking- 

and waking- friendly environment are supported by relatively dense and mixed land-use pattern 

in the urban center and sub-centers. The majority of the population and geography, however, is 

still auto-oriented. The diversity in the built environment and travel behavior make Boston a 

compelling case for the empirical analysis. The major findings are summarized below. 

The first essay of my dissertation focuses on the relationship between the built 

environment and household vehicle usage. The empirical results reveal that both the built-

environment and demographic factors are significantly associated with household vehicle miles 

traveled (VMT). On the demographic side, I find that wealthier neighborhood tend to have fewer 

VMT per vehicle, but considerably more VMT per household, suggesting that households in 

wealthier neighborhoods tends to own more cars and drive more total miles but use each car 

somewhat less. The built-environment factors have significantly higher impacts on VMT than do 

demographic factors.  In particular, improving accessibility to work and non-work destinations, 

connectivity, and transit accessibility can significantly reduce VMT. In Metro Boston, one 

standard deviation increase in the “distance to non-work destinations” factor is associated with 

an increase in annual VMT per household of 3,306 miles; one standard deviation increase in the 

“connectivity” factor is associated with a decrease in annual VMT per household of 3,481 mile; 

and one standard deviation increase in the “inaccessibility to transit and jobs” factor is associated 

with an increase in annual VMT per household of 5,745 miles; However, one standard deviation 
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increase in the “wealth” factor is associated with an increase in annual VMT per household of 

482 miles15.   

The empirical results of the second essay suggest that built-environment characteristics 

can be capitalized into property values. The transaction price of single-family properties in Metro 

Boston is positively associated with the “connectivity” and “walkability” factors, and negatively 

related to the “inaccessibility to transit and jobs” and “auto dominance” factors. Based on the 

estimation results, for a single-family property originally priced at 376.5 thousand dollars (the 

median transaction price), one standard deviation increase in the “connectivity” factor and 

“walkability” factor could increase the transaction price by 8.39 thousand dollars (2.2% of 

property value) and 5.34 thousand dollars (1.4% of property value), respectively; one standard 

deviation increase in “inaccessibility to transit and jobs” and “auto dominance” could decrease 

the transaction price by 30.65 thousand dollars (8.1% of property value) and 2.56 thousand 

dollars (0.7% of property value), respectively16. These results represent the average built-

environment effects across the region. The analysis also demonstrates the existence of 

submarkets for built-environment characteristics in Metro Boston. Households living close to 

transit stations pay higher premiums for smart-growth-type built-environment features than 

households living beyond walking distance to transit stations. The different premiums for the 

built environment between the two submarkets may be partly attributed to life style preference. 

Transit-oriented households may purposely choose to live in transit-friendly neighborhoods, thus 

would like to pay higher premium for built-environment features that favor transit. The 

                                                 
15 One unit increase of the “distance to non-work destination”, “connectivity”, “inaccessibility to transit and jobs”, 
and “wealth” factor is associated with 3,821, -2,970, 5,906, and 738 miles increase in annual VMT per household 
respectively. 
 
16 One unit increase of the “connectivity”, “inaccessibility to transit and jobs”, “auto dominance” and “walkability” 
factor is associated with 6.13, -30.25, -4.44, and 5.50 thousand dollars increase in property values for a single-family 
property valued at 376.5 thousand dollars. 
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coexistence of spatial-error-type autocorrelation and submarkets may suggest that some omitted 

variables, such as life style preference, are correlated at different spatial scales. These omitted 

variables may help explain the formation of submarkets and the variation in empirical measures 

reported in the literature. 

In Essay 3, I investigate the impacts of selectivity and spatial autocorrelation in the 

valuation of the built environment. The empirical results suggest that the built environment has 

significant impacts on the probability of housing sales. Single-family properties in denser areas, 

with better job accessibility, closer to non-work destinations but farther away from the CBD, are 

more likely to be sold in the market. The modeling results indicate that the sample of sold 

properties is a biased sample of the housing stock and spatial autocorrelation indeed exists in the 

housing transactions. Therefore, when analysts apply conventional hedonic price analysis to the 

sample of sold properties to value built-environment features, they will get biased estimates. 

After correcting for sample selection bias and spatial-error-type autocorrelation, I find that 

households pay 10.0 thousand dollars (3.1% of property value) for living within walking distance 

to subway stations, 20.1 thousand dollars for every kilometer closer to MBTA transfer lots (6.2% 

of property value), 0.5 thousand dollars (0.2% of property value)for every one thousand 

additional spatially-weighted job opportunities, and 26.8 thousand dollars (8.3% of property 

value) for every kilometer closer to non-work destinations for a property valued at 325.0 

thousand dollars (the median price of the sold sample). The magnitude of the biases due to 

selectivity and spatial autocorrelation could be big. For example, the WTP for proximity to 

subway stations computed based on the conventional hedonic-price model is about 91% higher 

than the one computed using Heckman-selection model with spatial error correction. 



  

 114

6.2 POLICY IMPLICATIONS 

There has been a long-time debate about the policies to reduce auto-dependence and associated 

transportation GHG emissions.  

In the short- to medium-term, technology alone will most likely not provide an easy 

answer. Heywood et al. (2003) conclude that based on the plausible vehicle technological 

improvements, both technology and demand management options will be required to reduce the 

U.S. private passenger vehicle annual fuel consumption over the next 20 years to levels below 

500 billion liter per year in 2003. To reduce travel demand, economists often argue that proper 

pricing -- such as congestion tolls, fuel taxes, and parking surcharges -- would eliminate the need 

for smart growth and associated land-use-control policies. With substantially higher road price, 

people would move closer to jobs and switch to transit to economize on travel. However, road 

pricing remains something theoretically meaningful but practically difficult due to the enormous 

political barriers. By far only a few cities such as Singapore and London have implemented 

congestion pricing in practice. In the absence of true market-based pricing of transportation, 

smart growth and land use planning becomes a second-best response to transportation energy use 

and emissions.  

This Boston-based study indicates that smart growth has the potential to significantly 

reduce VMT and associated transportation energy use and emissions, especially those policies 

that focus on increasing accessibility to destinations, creating traditional-type, high-density, well-

connected neighborhoods, and improving transit accessibility. Figures 14 shows orthophotos of 

two towns in Metro Boston, Brookline and Sharon. Brookline is a town near urban core and 

Sharon is in the suburban area between the first and second ring roads. Figure 15 depict the 

different street network patterns of Brookline and Sharon at similar scales. Brookline (especially 
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the dense northern half) has a traditional high-density, small-block, grid-type neighborhood 

design, while Sharon has relatively lower density and more cul-de-sacs and non-grid road 

network than Brookline. The average “connectivity” score is 2.17 for Brookline, and -0.23 for 

Sharon. The difference between them is about 2.04 standard deviations. Based on the modeling 

results, one standard deviation increase in the “connectivity” factor is equivalent to 3,481 miles 

decrease in annual VMT per household. Therefore, increasing the connectivity of Sharon to the 

level of Brookline could save about 7,098 miles in annual VMT per household, assuming other 

factors are the same. In fact, the actual annual VMT per household in Brookline and Sharon are 

7,818 miles and 24,499 miles respectively as differences in other factors expand the difference in 

annual mileage between the two towns. The total saving in annual VMT amounts to 98.9 million 

miles if the 5,934 households living in Sharon had the VMT pattern of those in Brookline, which 

is equivalent to 4.48 million gallons of gasoline and 39.5 thousand tons of CO2 emissions. It 

should be noted that this is only a very simplified computation -- a precise estimation of the CO2 

savings of curtain smart-growth project needs to deal with much more complex issues such as 

residential self-selection and necessitates a more complicated model structure, as suggested by 

Zegras et al. (2008). Nonetheless, this detailed analysis of actual VMT patterns provides some 

evidence of the potential effectiveness of smart growth in reducing vehicle usage and 

transportation emissions. 
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 Town of Brookline                                                                                                   Town of Sharon 

 
 
Source: The author. 
Figure 14: Orthophotos of Brookline and Sharon 
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Source: The author. 
Figure 15: Street Network Layout of Brookline and Sharon
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The environmental benefit of smart growth is mostly felt at the regional levels. What 

about the impact of smart growth at the local level? What will local residents sacrifice for public 

gains? Until the benefits and costs of land-use-control policies on the neighborhoods are weighed 

fully, local residents may remain skeptical of smart growth. This study provides evidence that 

smart growth actually generate benefit to local neighborhoods. Properly-designed smart-growth 

programs plan for all development needs, such as access to public transportation and jobs, 

proximity to activity centers, and walkable neighborhoods. The empirical analysis indicates that 

smart-growth features such as connectivity, accessibility, and walkability are actually positively 

associated with residential property values. Although finding association is not equal to 

constructing causality, it still provides some support for the argument that by providing various 

amenities, smart growth could increase the desirability of the community, thus the property 

values (Nelson et al. 2002).  

The built-environment effects on property values are not distributed evenly over space. 

Although households living in properties with good transit accessibility pay higher premiums for 

smart-growth-type built-environment characteristics than other households, most smart-growth 

features are still positively associated with properties values for both groups of households. The 

existence of submarkets for the built environment may suggest that the built-environment effect 

varies over space. In this case, calibrating a global model for the entire study area cannot capture 

the spatial variation of the relationships between the built environment and property values. 

Other modeling techniques such as geographically-weighted regression may help characterize 

this spatial effect.  

Smart growth needs coordinated land use and transportation planning. One impediment 

for the effective coordination of land use and transportation planning is the mismatch between 
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where decisions on land development are made – locally – and the transportation impacts are felt 

– regionally. Local municipalities have their own concerns in making development decisions. 

For example, a more compact development pattern often means higher population density and 

more households, which in turn will bring more children to local schools and incur higher 

education spending. Smart-growth-type development will not necessary be implemented 

automatically at the local level just because it is valued positively by homeowners.  

This study investigates the impact of the built environment at both the regional and local 

level. Regional planners could leverage such research findings to showcase the effectiveness of 

smart-growth strategies in reducing GHG emission, illustrate the potential improvement in the 

quality of life of the community, and facilitate the dialogue among regional planning agencies, 

local government and the public regarding alternative regional development scenarios. With a 

better understanding of the environmental benefits and the local amenities brought about by 

smart growth, local government might be more likely to give up some local interests for public 

gains, or at least agree to incentives or taxes to price the externality. 

Smart growth encourages travelers to switch from cars to transit. However, a growing 

number of transit agencies around the world are facing increasing financial difficulties. For 

example, from 2004-2007, the MBTA (the transit authority in Metro Boston) has almost doubled 

the transit fares in order to cover a large part of its operating deficit. In the most recent proposal 

in 2009, the MBTA proposed to increase fares by 19.5 percent, which could raise 69 million 

dollars per year for the authority. The fare hikes could adversely influence the market share of 

transit. To ensure adequate and sustainable transportation investment for current and future 

needs, policy makers need to reassess the current mechanisms of transportation finance in the 

United States and explore alternative revenue sources. As a result, the feasibility of funding 
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public transport systems through land value capture programs to recover part of the value-added 

effect of transit has become a keen concern of many researchers and policy makers. 

Estimation of the land use increment is essential to effectively mobilizing land value 

capture programs in the public transit case. This study proposes a new estimation method to 

address two important methodological issues in the estimation: selectivity and spatial 

autocorrelation. Both issues could produce biased estimates in valuing the built environment. 

The study confirms the value-added effect of transit after correcting for sample selection and 

spatial autocorrelation, which provides a basis for value capture initiatives. 

Although giving specific point estimates is not the major focus of this study, it is still of 

interest to do a “quick and dirty” computation to show the rough magnitude of the value-added 

effect of subway and the amount of value that could be captured. In a simplest hypothetical 

scenario, it is assumed that the value-added effect of subway is constrained to properties within 

walking distance (800m) to subway stations, and that property tax from these properties that is 

attributable to the proximity to subway stations will be earmarked to support the transit system. 

Figure 16 plots the locations of all MBTA subway stations in Metro Boston and their impact 

zone. Table 19 shows the computation results based on these admittedly strong assumptions.  

 



  

 121

 

Source: The author. 
Figure 16: MBTA Subway Stations and Their Impact Zone

Boston
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Table 19: Value-Added Effect of Subway Stations (Unit: Million Dollars) 

          Hedonic-price model Heckman-selection 
model 

Heckman-selection 
model + Spatial Lag 

Heckman-selection 
model + Spatial Error 

Property 
Type 

Total 
Value in 
Boston 

Property 
Tax in 
Boston 

Total 
Value 
within 
Impact 
Zone  

Property 
Tax 
within 
Impact 
Zone  

Value 
added of 
Subway 
Station 

Property 
Tax Attr. 
to 
Subway 

Value 
added of 
Subway 
Station 

Property 
Tax Attr. 
to 
Subway 

Value 
added of 
Subway 
Station 

Property 
Tax Attr. 
to 
Subway 

Value 
added of 
Subway 
Station 

Property 
Tax Attr. 
to 
Subway 

1-Family 10472.4 112.4 3574.8 38.4 209.8 2.3 369.2 4.0 197.9 2.2 109.9 1.2 
2-Family* 7092.3 76.1 2918.8 31.3 171.3 1.9 301.4 3.3 161.6 1.8 89.7 1.0 
3-Family* 6440.4 69.1 3584.1 38.5 210.4 2.3 370.1 4.1 198.4 2.2 110.1 1.2 
Condo.* 15113.3 162.2 12502.4 134.2 733.8 8.0 1291.1 14.2 692.2 7.6 384.2 4.2 
Total 39118.4 419.7 22580.1 242.3 1325.3 14.5 2331.8 25.6 1250.1 13.7 693.9 7.6 
* Numbers are computed using estimated coefficients of the single-family properties model. 
Source: Calculated by the author.    
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The first row of Table 20 presents the computation results for single-family properties in 

the City of Boston using the modeling results of Essay 3. The total assessed value for all single-

family properties in the City of Boston is 10.5 billion dollars, which generate annual property tax 

of 112.4 million dollars based on the tax rate of 2005. The aggregate assessed value for single-

family properties within the impact zone is 3.6 billion dollars, or 34.1% of the total assessed 

value in the City. After the sample selection and spatial-error-type autocorrelation correction, the 

value-added effect of subway stations for single-family properties in the city is 109.9 million 

dollars. The corresponding annual property tax is 1.2 million. Single-family properties are only a 

proportion of the housing stock. Table 20 also presents the results for two-family, three-family 

and condo properties assuming that households living in these types of properties have the same 

WTP for subway accessibility as households living in single-family properties. The total value-

added of subway stations is 693.9 million dollars, or 1.8 percent of the overall assessed value 

39.1 billion. The corresponding annual tax revenue is 7.6 million dollars, which could be 

captured according to the hypothetical scenario to fund new transit facilities as well as transit-

oriented development. The 7.6 million revenue is small compared to the $430 million revenue 

from transit fares in the 2008 budget of the MBTA, but similar in magnitude to the revenues 

from advertising (11.0 million) and Federal Government (8.0 million). It should also be noted 

other property types like multi-family apartments and commercial properties are not included in 

this calculation and subway stations outside Boston are also neglected.  

As shown in Table 20, the estimates of the value-added of subway stations vary 

significantly across models. On the one hand, it shows the importance of correcting sample 

selection and spatial autocorrelation in the estimation. On the other hand, it also reminds policy 

makers to stay cautious when designing land value capture schemes. 
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In summary, the research findings of this dissertation suggest that: (1) the built-

environment features advocated by smart growth could benefit the region as reflected by the 

significant reduction in vehicle usage and associated GHG emissions; (2) smart-growth-type 

built- environment features could improve the quality of life in local neighborhoods as reflected 

by the increase in property values; and (3) selectivity and spatial autocorrelation need to be 

corrected in valuing the built environment,  if governments or agencies plan to apply value 

capture schemes to support environmental-friendly transport modes and resource-efficient land 

development patterns. 

6.3 RESEARCH CONTRIBUTIONS 

The study has made a number of contributions to the geography, transportation, and planning 

fields.  

6.3.1 Spatial Unit of Analysis and the MAUP 

This study enriches the built-environment literature by conducting a comprehensive and 

spatially-detailed analysis on the relationships among the built environment, place of residence 

and vehicle usage.   

One significant challenge in spatial analyses is the well-known Modifiable Area Unit 

Problem (MAUP). The MAUP has two aspects, scale and zonal definition, which can lead to 

inconsistency in quantitative and statistical analyses. The scale effect refers to the inconsistency 

due to the change from one aggregation level to another (e.g., from block group to census tract). 

The zonal effect refers to the inconsistency due to the multiple ways in which areal units can be 

defined. Using disaggregate data and grid-cell type spatial unit are identified as one possible 

method to mitigate the MAUP.  
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Table 20 summarizes the spatial units of analysis in several recent land use-transportation 

studies. Despite the MAUP effects, the TAZ or similar census geography remains a very 

common base unit for measuring the built environment in the relevant analyses. For example, 

Newman and Kenworthy (1999) use city-level data to analyze the relationship between density 

and energy use. Holzclaw et al. (2002) investigate the impact of neighborhood urban design and 

socioeconomic characteristics on car ownership and vehicle usage at the zip code level. At such 

aggregated levels, the intra-zone variations of built-environment, vehicle usage, and 

demographic measures could be too large to ignore. To deal with the MAUP, this study takes 

advantage of several spatially-detailed datasets and advanced GIS techniques and carries out the 

empirical analysis at fine-grained 250x250m grid cell level.  
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Table 20: Spatial Units of Analysis in Several Recent Studies 

Study Purpose Spatial Unit of Analysis 
Bhat and Guo (2007) BE on car ownership TAZ 
Boarnet and Sarmiento (1998) BE on VMT Block group and zip code zone 
Brownstone and Golob (2008) BE on VMT and fuel use Block group 
Cervero (2002) BE on mode choice TAZ 
Cervero and Kockelman (1997) BE on travel demand Census tract; 1 Hectare grid 
Crane and Crepeau (1998) BE on travel demand 1/2 mile buffer around HH for network; census tract for land uses 
Greenwald (2003) BE on non-work mode substitution TAZ 
Greenwald and Boarnet (2001) BE on walk TAZ, block group, HH buffers (1/4 -1mi) 
Hess and Ong (2002) Neighborhood on auto ownership TAZ, census tract 
Holzclaw et al. (2002) BE on car ownership and vehicle usage Zip code zone 
IBI Group (2000) Average HH Transport GHG emissions per TAZ TAZ, in some cases TAZ centroid radii 
Newman and Kenworthy (1999) BE on energy use Town 
Rajamani et al. (2003) BE on mode choice Census block group boundary 
Rodriguez and Joo (2004) BE on mode choice Block group for density; corridor measures for path, slope, sidewalk 
Srinivasan (2001) BE on travel demand TAZ 
Zhang (2004) BE on mode choice TAZ, 800m grid cell 

 



  

 127

Figure 17 shows VMT per household aggregated at the municipality level, using quantile 

classification method and nine categories. The spatial pattern is what analysts would expect, 

municipalities in the urban center have much lower VMT measures than municipalities in the 

suburban area. Although this municipality level map captures some interesting spatial patterns, it 

overlooks subtle phenomena exhibited at more disaggregate scale. In Figure 17, Brookline is a 

town close to the urban core and Sharon is a suburban town with higher VMT per household 

than Brookline. Figure 18 compares VMT per household at 250x250m grid cell level for 

Brookline and Sharon. Analysts can observe significant intra-town variations in both towns. The 

range of grid-cell level VMT per household is 2,986-37,154 miles for Brookline and 5,270-

67,595 miles for Sharon. Although the town average of VMT per household in Sharon is much 

higher than that of Brookline, some communities in Brookline behave just like a suburban 

neighborhood, and households in part of Sharon drive even less than households in an average 

Brookline grid cell. These interesting spatial patterns diminish from Figure 17 due to data 

aggregation. The intra-zone variation is more severe in suburbs than in inner city because of the 

difference in the size of zones.  In the inner city, a census tract may only contain a few city 

blocks, whereas in the suburb it is nor rare that an entire town is a single census tract. 

What is the underlying factor on which VMT per household depend? The intra-town 

variation in VMT per household may stimulate further interest of analysts. The built-

environment characteristics of Brookline and Sharon as shown in Figure 18, suggests that (1) 

proximity to subway stations and well-connected road network may have significant impacts on 

VMT in Brookline; (2) grid cells close to the commuter rail station may drive less than other grid 

cells in Sharon; and (3) detecting meaningful VMT difference requires disaggregate data at or 

near the 250x250m grid cell scale. 
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Source: The author. 
Figure 17: VMT per Household at the Municipal Level 

Brookline 

Sharon 
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Town of Brookline                                                                                                    Town of Sharon 

  
Source: The author. 
Figure 18: Grid-Cell Level VMT per Household in Brookline and Sharon 
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The interaction between human behavior and the physical environment likely involves 

different processes at different spatial scales. Behavioral consideration and justification for a 

specific variable are important in selecting a specific scale and areal unit definition. For example, 

the impact of property tax rate is felt at the town level; the impact of school quality is constrained 

to the school district level; and Figure 18 suggests that assessing the built-environment effect on 

VMT needs to be carried out at much more fine-grained scale than analysts previously did, 

because average zonal travel and built-environment attributes may not necessarily reflect the 

characteristics of the specific locations where individual trip-making takes place. 

6.3.2 Relative Effects of Built-Environment and Demographic Factors 

The study provides new evidence of the relative effects of built-environment and demographic 

factors on vehicle usage. In this study, I find that the impact of the built-environment factors on 

VMT is significantly higher than that of demographic factors, contrary to the findings of many 

household-survey-based studies. These studies tend to find demographic characteristics and 

attitudinal factors explain a significant proportion of VMT variation, and the built-environment 

effects are minimal. To some extent, the different data aggregation schemes employed in these 

two types of studies might contribute to the different results. Data aggregation and associated 

MAUP could bring significant biases in statistical analyses. Previous studies usually use 

household-level demographic variables and aggregate built-environment variables at zip code or 

TAZ level, which is opposite to my study using aggregate (block-group-level) demographic 

factors and disaggregate (250x250m grid-cell-level) built-environment factors. For example, 

using travel diary data for 769 California households, Boarnet and Sarmiento (1998) found no 

stable link between density (computed at block group and zip code level) and VMT after using 

instrumental variables to control for the endogeneity of density. Using survey data for 2,954 



  

 131

households in San Francisco, Bhat and Guo (2007) find statistically significant but quantitatively 

small impact of built-environment measures (computed at the TAZ level) in vehicle ownership, 

while demographic and housing tenure variables have strong effects.  Brownstone and Golob 

(2008) build a simultaneous equations model of residential density (computed at block group 

level), VMT and vehicle fuel use using the 2001 National Highway Transportation Survey, and 

find that the magnitude of the density effect is very small. My study suggests that the built-

environment effects may be biased downward in previous studies because they use aggregate 

built-environment measures. 

6.3.3 Transportation and Land Value Capture 

This study also contributes to the existing literature of transportation financing by proposing a 

new analytical approach to evaluate the impact of transportation on property values. Assessing 

the property-value effect of transportation improvement is a prerequisite to design value-capture 

programs. The dominant method in valuing housing attributes is the hedonic price analysis. 

Table 21 lists some hedonic studies of the price effect of good transit access in North America. It 

shows that proximity to transit stations could increase property values by a wide range (4%-

45%). The enormous variation in the magnitude of the impact could be attributed to either type 

of transit, other location characteristics, definition of proximity, model specification, or a 

combination of all these factors. However, none of these studies considers sample selection issue 

in the estimation. 
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 Table 21: Property-Value Impacts of Transit Proximity in North American Cities 

Case/Location Impact on Impact Source 
Boston Commuter Rail Housing price +6.7% Armstrong 1994 
Buffalo Light Rail Housing price +4-11% Hess and Almeida 2007 
Miami Metrorail Housing price +5% Gatzlaff and Smith 1993 
Portland Metro Express Housing price +10.5% Al-Mosaind et al. 1993, Chen et al. 1998 
San Francisco Bay Area BART Residential rent +10-15% Cervero 1996 
Santa Clara County Light Rail Residential rent +15% Weinberger 2001 
Santa Clara County Light Rail Housing price +45% Cervero and Duncan 2002 
St. Louis Metrolink Housing price +32% Garrett 2004 
Toronto Metro Subway Housing price +20% Bajic 1983 

 

Using data from the City of Boston, this study demonstrates that the widely-used hedonic 

price analysis calibrated with a sample of sold properties could lead to significant bias in valuing 

the built environment if sample selection issue is not corrected for. In this study, I apply 

Heckman 2-step procedure to correct for sample selection bias and integrate spatial econometric 

techniques into Heckman-selection models to resolve spatial autocorrelation.  The proposed 

analytical approach, combining a Heckman procedure with spatial econometric techniques, could 

produce unbiased estimates of the WTP for built-environment characteristics. After the 

corrections, the value-added attributable to proximity to subway stations is 3.1% of property 

values in the City of Boston, compared with 5.9% of property values without the correction. 

6.3.4 Administrative Data for Urban Modeling 

 Previous studies on land use and transportation primarily rely on household survey data. In this 

study, I demonstrate the benefits as well as difficulties in utilizing administrative data for urban 

modeling. With the rapid development of spatial database infrastructure in the last decade, the 

amount of available administrative data with spatial information has increased dramatically. For 

example, GIS data layers are often available on road networks, parcels, and building footprints, 
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and transaction information like vehicle safety inspections records, assessing records, housing 

transaction records, and utility records. 

This study shows at very low marginal cost, the administrative data can produce very rich 

information to support metropolitan planning. The administrative data, such as the vehicle safety 

inspection records and assessing records are routinely collected by corresponding agencies. The 

datasets are theoretically available to analysts at no cost, compared to the hundreds of dollars 

expense per observation in common surveys.  

The administrative data have exceptionally broad temporal and spatial coverage. They 

usually cover the entire population of the subject of interest and are regularly updated. Both 

datasets are updated annually. Such pervasive administrative datasets enable analysts to compute 

reliable and comparable measures to better inform policy making. On the contrary, surveys 

usually have only a few thousand observations and are updated every 5-10 years. 

These advantages together with other benefits such as accuracy, automatic collection and 

central storage make administrative data a compelling data source for urban modeling. However, 

inherent disadvantages of such administrative data also impose significant challenges in the 

exploitation of these datasets.  

First, administrative data are usually not primarily designed for modeling purposes, so 

some critical information may be lacking, and the datasets are often not in an easy-to-use format, 

which restricts the usefulness of the raw data without intensive processing and careful 

interpretation. For example, both the vehicle safety inspection records and housing transaction 

records lack household-level demographic characteristics, which are indispensable to calibrate 

activity-based models to explore the underlying behavior mechanism of household choices of 

vehicle usage and residential locations.  
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Second, the administrative data are usually collected and maintained by different 

agencies in different formats with different spatial and temporal coverages, which makes cross-

referencing among datasets a hard task and seriously limits the utilization of these datasets. In 

Essay 3, the housing transaction records from the Suffolk County Registry of Deeds use street 

address of properties as the only location identifier. The assessing records from the Assessing 

Department use parcel ID as the location identifier. Advanced GIS and DBMS tools are required 

to link these two datasets together. The data processing proved to be very time consuming and 

labor intensive.  

Third, administrative data may introduce new sampling biases that need special attention. 

Some subgroups may be under-represented in the administrative datasets due to various reasons. 

For example, analysts need odometer readings from at least two successive safety inspections to 

compute the annual mileage of a vehicle. Therefore, VMT from new cars purchased within one 

year are missing from the analysis, which may bias the VMT measures downwards for zones 

with large numbers of new vehicles17. A well-designed survey can help sort out appropriate 

weights to remedy the bias. 

In summary, both survey data and administrative data have their pros and cons. Although 

survey data still dominate current research efforts, administrative data indeed provide a 

meaningful alternative data source. The employment of administrative data in urban modeling is 

not to replace survey data, but to reduce the dependence on surveys and to complement their 

usage in metropolitan planning.  

                                                 
17 Despite this limitation, the safety-inspection-based VMT dataset used in this study is still better than the 
California emission-inspection-based VMT dataset used in Holtzclaw et al. (2002). California exempts new vehicles 
from emission inspections for the first two years, while the safety-inspection-based VMT dataset only misses new 
vehicles bought within one year. 
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6.4 FUTURE RESEARCH DIRECTIONS 

In this final section, I discuss methodological issues that need to be further clarified as well as 

directions that this study can be extended in the future.  

6.4.1 Causality  

Due to the cross-sectional nature of the empirical analysis, I cannot construct causal relationships 

between the built environment, vehicle miles traveled, and property values, and the potential 

endogeneity could bias the estimates of the models. For example in Essay 1, I found that VMT is 

negatively associated with smart-growth type built-environment features. However, the direction 

of the underlying causal link cannot be identified: whether the built environment influences 

household travel behavior or whether preferences for certain travel pattern affect the choice of 

the built environment. If the latter direction is the dominant one, the observed association 

between the built environment and vehicle usage may be attributable to residential self-selection. 

For example, those preferring transit may consciously choose to live in transit-friendly 

neighborhoods and thus use car less. If so, the ability to use land-use-control policies to change 

household travel behavior may be limited. There is similar mutual causality issue in the property-

value study: built-environment attributes like accessibility, connectivity, and walkability may 

increase property values; in the meantime, good built-environment amenities could be more 

likely provided in neighborhood with higher property values. Solving the causality issues 

necessitates either before-and-after datasets, or more complex econometric models, such as 

structural equation models and instrumental variable approach. 
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6.4.2 Behavior Mechanism 

Due to data limitations, I lack detailed household-level demographic information in the study. In 

the VMT study, I have to carry out the analysis at the grid cell level. Even though I use small 

grid cells (of 15.4 acres each) as the basic spatial unit, they measure behavior aggregated across 

multiple households in the grid cell. Hence, the underlying behavior mechanisms by which the 

built environment influences individual decisions cannot be revealed by the study. Household-

level demographic information with broad coverage is usually unavailable for analysts due to 

confidentiality concerns. Future analyses on the same research questions using household or 

individual survey data for Metro Boston would be a good complement for this study, which 

enables more in-depth exploration of the underlying behavior mechanism.  

6.4.3 Spatial Autocorrelation, Housing Submarkets and Sample Selection  

This study provides some evidence on the existence of spatial autocorrelation, submarkets and 

sample selection in the housing market, but many issues remain to be further explored to reveal 

the nature of these issue and the underlying relationships among them. For example, calibrating 

Heckman selection models for each time period rather than a pooled model like I used in this 

study could provide more insights about the temporal change in the pool of properties transacted 

and the behavior of homebuyers in choosing a property. A geographically-weighted regression 

could do better in capturing the spatial variation in the relationships between the built 

environment and residential property values than global models such as OLS model, spatial lag 

model, and spatial error model. 
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6.4.4 Extension of Study Areas 

Since the analytical framework developed in this study can be readily applied to further research, 

the empirical analysis conducted in this study can be extended to other metropolitan areas. There 

is considerable regional variation in urban structures in the U.S., and the nature of the land use - 

transportation interconnection varies from place to place. Boston is a metropolis with relatively 

high density and good transit provision among U.S. cities. Comparative studies of Boston with 

other metropolitan areas, especially sprawl-type cities like Los Angeles and Atlanta, would 

provide a more comprehensive picture of metropolitan variation in the land use-transportation 

interconnection. 

6.4.5 Policy Evaluation 

This study explores the interconnections between land use and transportation. Currently, various 

programs that leverage these interconnections to promote stainable metropolitan growth are 

being implemented, such as urban growth boundary, mix-use planning, and transit-oriented 

development. The efficacy of these programs in reducing GHG emissions, however, is not well-

studied, possibly due to various methodological challenges, such as residential self-selection. 

More comprehensive program evaluation would help planners and policy makers formulate 

effective smart-growth strategies to achieve sustainable metropolitan growth. 

 

To summarize, future research needs to generate more in-depth insights into the nature of the 

land use-transportation interconnection and should provide useful information for governments 

and agencies to make informed decisions regarding the sustainable development of metropolitan 

areas. 
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APPENDICES 

APPENDIX 1: SPATIAL-ERROR MODELS USING BUILT-ENVIRONMENT 

FACTORS AND DEMOGRAPHIC VARIABLES 

In the first study, for comparison purpose, I also calibrated the spatial error model with built-

environment factors and 3 demographic variables, median household income, percent of 

households with less than 3 member, and percent of population 16 years old and over and in 

labor force. Each demographic variable represents one demographic factor. The estimation 

results and the change in VMT measures due to one standard deviation increase in the 

independent variables are presented in Tables A-1 and A-2.  The major conclusions of Essay 1 

still hold, except that the coefficient of the median household income variable has a positive and 

insignificant coefficient in the VMT per vehicle model. 

 

.
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Table A-1: Estimation Results of Spatial Error Model Using Built-Environment Factors and Demographic Variables 

VMT per Vehicle VMT per Household VMT per Capita 
  Coef. t-stat.   Coef. t-stat.   Coef. t-stat.   
Built-Environment Factors          
Distance to non-work destinations 442.5 21.12 ** 3842.7 23.39 ** 878.5 16.21 ** 
Connectivity -248.1 -23.14 ** -2990.9 -35.18 ** -849.2 -30.11 ** 
Inaccessibility to transit & jobs 1006.0 32.18 ** 6017.5 30.51 ** 1970.0 30.87 ** 
Auto dominance -9.4 -0.97  571.3 5.92 ** 267.6 8.21 ** 
Walkability 16.3 1.88  -1571.1 -19.60 ** -596.7 -22.15 ** 
Demographic Variables          
Median household income in thousand dollars 0.3 0.72  25.0 6.56 ** 6.5 5.08 ** 
Percent of household with less than 3 members 104.7 1.70  -2515.8 -4.01 ** 739.4 3.48 ** 
Percent of population 16+ years old and in labor force 177.7 2.50 * 152.3 0.21  818.3 3.32 ** 
          
Lambda 0.91 398.15 ** 0.84 231.49 ** 0.83 219.59 ** 
Constant 12194.3 148.82 ** 30813.3 40.11 ** 9188.8 35.48 ** 
* and ** denote coefficient significant at the 0.05 and 0.01 level respectively. 
Source: Calculated by the author. 
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Table A-2: Change in VMT Measures Due to One Standard Deviation Increase in Built-

Environment Factors and Demographic Variables 

  
VMT 

 per Vehicle 
VMT  

per Household 
VMT 

per Capita 
Built Environment Factors    
Distance to non-work destinations 383.0 3325.3 760.2 
Connectivity -290.7 -3504.7 -995.1 
Inaccessibility to transit and jobs 978.6 5853.5 1916.4 
Auto dominance -5.7 348.5 163.3 
Walkability 15.0 -1447.1 -549.6 
Demographic Variables    
Median household income 7.6 683.7 178.5 
Percent of households with less than 3 members 12.8 -306.9 90.2 
Percent of population 16+ years old in labor force 15.3 13.1 70.2 

Source: Calculated by the author. 
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